Department of Physics

Debraj Roy College (Autonomous)

Program Structure for 1st, 2nd and 3rd Semester of FYUGP

(Effective from the session 2024-25)

Year	Semester	Course	Title of the Course	Total Credit
1st	1st	PHYM101	Mechanics and	4
			Properties of Matter	
		PHYMIN101	Mechanics and	4
			Properties of Matter	
		PHYGEC101	Evolution of Science	3
		PHYSEC101	Electrical Wiring and	3
			Maintenance	
		AEC-101*	Modern Indian	4
			Language	
		VAC-101*		2
		Total		20
	2nd	PHYM201	Waves and Optics	4
		PHYMIN201	Waves and Optics	4
		PHYGEC201	Materials Today /	3
			Digital and Space	
			Technologies	
		PHYSEC201	Mastering Productivity	3
			with Google Workspace	
		AEC-201*	English Language and	4
			Communication Skills	
		VAC-201*		2
		Total		20
2nd	3rd	PHYM301	Mathematical Physics-I	4
		PHYM302	Computational and	4
			Numerical techniques in	
			Physics -I	
		PHYMIN301	Mathematical Physics-I	4
		PHYGEC301	The Universe /	3
			Atmosphere of the	
			Earth	
		PHYSEC301	Basic Excel Skills	3
		AEC-301*		2
		VAC-301*		
		Total		20

• AEC and VAC courses and their credit distribution are yet to be finalized

Syllabus of 1st Semester Major Course

Course title: Mechanics and Properties of Matter

Course code: PHYM101

Nature of the course: Core

Total credits:4 (Theory-3, Practical -1)

Distribution of marks:

(A) Summative Assessment -60 (Theory -45, Practical-15)

(B) Formative Assessment – 40 (Theory -30, Practical-10)

Course Objective: To impart the basic level of knowledge of Newtonian Mechanics, properties of matter, simple harmonic motion, gravitation and to improve laboratory skill in mechanics and properties of matter.

- (i) Understand the basic concepts of Newtonian Mechanics
- (ii) Understand basic conservation Laws
- (iii) Analyze simple harmonic oscillators
- (iv) Understand the properties of matter
- (v) Analyze central force motion
- (vi) Examine the laws and measure the properties in laboratory.

PHYM101T: Mechanics and Properties of Matter (Theory)

Distribution of Marks: 45 (Summative) + 30 (Formative)

[Revisit: Vector Algebra- Addition, Resolution, dot and cross product, triple product, Interpretation of differentiation and integration]

Unit	Content	L	Т	Р	Μ	Hr
Unit 1:	1.1: Frames of Reference, Inertial Frames, Galilean	6			4	6
Newtonian	Transformations, Galilean Invariance;					
Mechanics	Dynamics of a System of Particles, Centre of Mass,				6	
	Principle of Conservation of Linear Momentum					
	1.2: The Work-Energy Theorem, Conservative and Non-	6			4	6
	conservative Forces, Conservation of Mechanical Energy,				6	
	Work done by non-conservative forces, Force as gradient of				0	
	potential energy, Energy Diagram, Stable and unstable					
	equilibrium.					
	1.3: Principle of Conservation of Angular Momentum,	8			<u>5</u>	8
	Rotation about a fixed axis, Moment of Inertia, Radius of				8	
	<u>Gyration</u> , Calculation of Moment of Inertia for rectangular,				0	
	cylindrical and spherical bodies, Kinetic Energy of Rotation,					
	Motion involving both translation and rotation					
Unit 2:	2.1: <u>Relation between Elastic constants</u> , Twisting torque on	4			<u>7</u>	4
Properties	a Cylinder or Wire.					
of Matter	2.2: Kinematics of Moving Fluids, Poiseuille's Equation	3			<u>5</u>	3
	for Flow of a Liquid through a Capillary Tube					
Unit 3:	Simple Harmonic Motion (SHM) and Oscillations,	9			15	9
Oscillations	Differential Equation of SHM and its solution, Kinetic					
	Energy, Potential Energy, Total energy and their time					
	average values, Damped oscillation, Forced oscillations,					
	Resonance, Power Dissipation and Quality Factor.					
Unit 4:	Law of gravitation. Gravitational potential energy. Inertial	9			<u>5</u>	9
Gravitation	and gravitational mass. Potential and field due to spherical					
and Central	shell and solid sphere. Motion of a particle under a central				10	
Force	force field. Two-body problem and its reduction to one-body					
Motion	problem and its solution. The energy equation and energy					
	diagram. Kepler's Laws. Satellite in circular orbit and					
	applications. Geosynchronous orbits. Weightlessness. Basic					
	Idea of global positioning system (GPS).					
	Total	45			75	45

*L- Lecture, T- Tutorial, P- Practical, M- Marks, Hr - Hours

** The underlined parts are for formative assessment only

- 1. Mechanics, D.S. Mathur, (S. Chand and Company Limited)
- 2. Mechanics, Berkeley Physics, Vol.1, C.Kittel, W.Knight, et.al. (Tata McGraw Hill).
- 3. Elements of Properties of Matter, D S Mathur, (S. Chand and Company Limited)
- 4. Theoretical Mechanics, M. R. Spiegel, (McGraw Hill Book Company)

PHYM101P: Mechanics and Properties of Matter (Lab)

Distribution of Marks: 15 (Summative) + 10 (Formative)

Unit	Content (List of Experiments)	L	Т	Р	Μ	Hr
Mechanics	1. Measurements of length (or diameter) using vernier			15	25	30
and Properties	calliper, screw gauge and travelling microscope.					
of Matter	2. To study the random error in observations.					
	3. To determine the height of a building using a Sextant.					
	4. To study the Motion of Spring and calculate (a) Spring					
	constant, (b) g and (c) Modulus of rigidity.					
	5. To determine g and velocity for a freely falling body using					
	Digital Timing Technique					
	6. To determine Coefficient of Viscosity of water by					
	Capillary Flow Method (Poiseuille's method).					
	7. To determine the Modulus of Rigidity of a Wire by					
	Maxwell's needle.					
	8. To determine the elastic Constants of a wire by Searle's					
	method.					
	9. To determine the value of g using Bar Pendulum.					
	10. To determine the value of g using Kater's Pendulum					
	Total			15	25	30

*L- Lecture, T- Tutorial, P- Practical, M- Marks, Hr - Hours

- 1. Advanced Practical Physics for students, B. L. Flint and H.T. Worsnop, (Asia Publishing House)
- 2. B.Sc. Practical Physics, C. L. Arora (S Chand)
- 3. A Textbook on Practical Physics, K G Mazumdar, B. Ghosh (Sreedhar Publishers)

Syllabus of 2nd Semester Major Course

Course title: Waves and Optics

Course code: PHYM201

Nature of the course: Core

Total credits: 4 (Theory-3, Practical -1)

Distribution of marks:

(A) Summative Assessment -60 (Theory -45, Practical-15)

(B) Formative Assessment – 40 (Theory -30, Practical-10)

Course Objective: To develop theoretical and experimental knowledge of waves, oscillations, superpositions and various phenomena of light.

- (i) learn the basics of wave motions
- (ii) know about the wave nature of light
- (iii) observe and analyse various properties of waves and light experimentally
- (iv) relate the experimental observation with theoretical foundation.

PHYM201T: Wave and Optics (Theory)

Distribution of Marks : 45 (Summative) + 30 (Formative	Distribution	of Marks :	45 (Summativ	ve) + 30 (Formative	e)
--	--------------	------------	--------------	---------------------	----

Unit	Content	L	Τ	Р	Μ	Hr
Unit 1:	1.1: Linearity and Superposition Principle. Superposition of	3			<u>5</u>	3
Superposition	two collinear oscillations having equal frequencies and					
of Harmonic	different frequencies (Beats).					
Oscillations	1.2: Graphical and Analytical Methods. Lissajous Figures	2			<u>3</u>	2
	with equal and unequal frequency and their use					
Unit 2: Wave	2.1: Plane and Spherical Waves, Longitudinal and	6			<u>2</u>	6
Motion	Transverse Waves, Plane Progressive (Travelling) Waves,				8	
	Wave Equation, Particle and Wave Velocities, Differential				0	
	Equation of a Wave, Pressure of a Longitudinal Wave,					
	Energy Transport, Intensity of Wave.					
	2.2: <u>Velocity of Transverse Vibrations of Stretched Strings</u> ,	4			<u>7</u>	4
	Velocity of Longitudinal Waves in a Fluid in a Pipe,					
	Newton's Formula for Velocity of Sound, Laplace's					
	Correction					
Unit 3:	Standing (Stationary) Waves in a String: Fixed and Free	8			13	8
Harmonic	Ends, Analytical Treatment, Phase and Group Velocities,					
Waves	Changes with respect to Position and Time, Energy of					
	Vibrating String, Transfer of Energy, Normal Modes of					
	Stretched Strings, Plucked and Struck Strings, Melde's					
	Experiment, Longitudinal Standing Waves and Normal					
	Modes, Open and Closed Pipes					
Unit 4: Wave	Electromagnetic nature of light, definition and properties of	2			<u>3</u>	2
optics	wave front, Huygens principle, Temporal and Spatial					
	coherence	-				-
Unit 5:	Division of wavefront and amplitude, intensity distribution	8			<u>4</u>	8
Interference	in an interference pattern, Young's double slit experiment,				9	
	Fresnel's Biprism. Phase change on reflection: Stokes)	
	treatment, Interference in Thin Films: parallel and wedge-					
	snaped films, Newton's Rings: Measurement of wavelength					
Unit 6:	Erospel and Froundofer diffraction Freepol's Half Daried	0			2	8
Diffraction	Zones for Plane Wave Fresnel diffraction pattern of a	0			<u> </u>	0
Dimaction	straight edge and at a circular aperture Fraunhofer				10	
	diffraction: Single slit Double slit Diffraction grating					
	Resolving power of grating					
Unit 7.	Polarized light and its mathematical representation	Δ			3	Δ
Polarization	Production of polarized light by reflection refraction and	т			5	т
1 olulization	scattering Polarization by double refraction and Huygen's				5	
	theory Nicol prism Production and analysis of circularly					
	and elliptically polarized light					
	Total	45			75	45
					, 5	

*L- Lecture, T- Tutorial, P- Practical, M- Marks, Hr - Hours

** The underlined parts are for formative assessment only

Reading Resources

- 1. Waves: Berkeley Physics Course, vol. 3, Francis Crawford (Tata McGraw-Hill)
- 2. Fundamentals of Optics, F.A. Jenkins and H.E. White (McGraw-Hill)
- 3. Principles of Optics, Max Born and Emil Wolf, (Pergamon Press).
- 4. Optics, Ajoy Ghatak, (Tata McGraw Hill)
- 5. The Physics of Vibrations and Waves, H. J. Pain, (John Wiley and Sons).
- 6. The Physics of Waves and Oscillations, N.K. Bajaj, (Tata McGraw Hill)
- 7. Fundamental of Optics, A. Kumar, H.R. Gulati and Khanna, (R. Chand Publications)

PHYM201P: Waves and Optics (Lab)

Distribution of Marks: 15 (Summative) + 10 (Formative)

Unit	Content (List of Experiments)	L	Τ	Р	Μ	Hr
Waves and	(1) To determine the frequency of an electric tuning fork			15	25	30
Optics	by Melde's experiment and verify $\lambda^2 - T$ law					
	(2) To determine the refractive index of the Material of a					
	prism using sodium source.					
	(3) To determine the dispersive power and Cauchy					
	constants of the material of a prism using mercury source.					
	(4) To determine wavelength of sodium light using Fresnel Binrism.					
	(5) To determine wavelength of sodium light using					
	Newton's Rings.					
	(6) To study the diffraction pattern of single/double slit					
	(7) To determine wavelength of a light source using plane					
	diffraction grating.					
	(8) To determine dispersive power and resolving power					
	of a plane diffraction grating.					
	(9) To determine the specific rotation of sugar solution					
	using Polarimeter					
	(10) To analyze elliptically polarized Light by using a					
	Babinet's compensator					
	Total			15	25	30

*L- Lecture, T- Tutorial, P- Practical, M- Marks, Hr - Hours

** The underlined parts are for formative assessment only

- 1. Advanced Practical Physics for students, B. L. Flint and H.T. Worsnop, (Asia Publishing House)
- 2. B.Sc. Practical Physics, C. L. Arora (S Chand)
- 3. A Textbook on Practical Physics, K G Mazumdar, B. Ghosh (Sreedhar Publishers)

Syllabus of 3rd Semester Major Course

Course title: Mathematical Physics-I

Course code: PHYM301

Nature of the course: Core

Total credits: 4 (Theory-4, Practical -0)

Distribution of marks:

(A) Summative Assessment -60 (Theory -60, Practical-0)

(B) Formative Assessment – 40 (Theory -40, Practical-0)

Course Objective: To develop the requisite mathematical skills of a student to understand the fundamental topics in Physics and to prepare them for more advanced level of Physics

- (i) Write a problem in Physics in the language of Mathematics.
- (ii) Identify a range of diverse mathematical techniques to formulate and solve a problem in basic Physics.
- (iii) Analyze some of the basic mathematical concepts and methods.
- (iv) Apply the knowledge and understanding of these mathematical methods to solve problems in a number of elementary branches of Physics like mechanics, electromagnetic theory, statistical Physics, thermal Physics etc.

PHYM301T: Mathematical Physics-I

Unit	Content	L	Т	Р	Μ	Hr
Unit 1:	1.1: Functions and their plotting, Continuity and	2			<u>4</u>	2
Calculus	Differentiability of functions, Approximation methods:					
	Taylor series, Maclaurin series.	10			1.6	10
	1.2: <u>First Order Differential Equations, Integrating Factor,</u>	10			<u>16</u>	10
	Second Order Differential Equations, Homogeneous and					
	Wronskian and general solution Statement of existence and					
	Uniqueness Theorem for Initial Value Problems, Particular					
	Integral.					
	1.3 : Calculus of functions of more than one variable: Partial	6			10	6
	Derivatives, Exact and Inexact Differentials, Integrating					
	Factor, Constrained Maximization using Lagrange					
	Multipliers.	1.0			_	1.0
Unit 2:	2.1: <u>Vector Differentiation: Directional Derivatives and</u>	10			<u>7</u>	10
Vector	Normal Derivative, Gradient of a Scalar Field and its				10	
Calculus	<u>geometrical interpretation</u> , Divergence and Curl of a vector Field Del and Laplacian Operators. Vector identities					
	2.2. Vector Integration: Ordinary Integrals of Vectors	14			23	14
	Multiple integrals, Jacobian, Notion of Infinitesimal Line,					
	Surface and Volume Elements, Line, Surface and Volume					
	Integrals of Vector Fields, Flux of a Vector Field, Gauss'					
	Divergence Theorem, Green's and Stokes Theorems and					
	their applications (no rigorous proofs).	0			10	0
Unit 3:	Orthogonal Curvilinear Coordinates, Spherical Polar	8			13	8
Orthogonal	Coordinates, Cylindrical Coordinates; Derivation of					
Coordinates	Cylindrical Coordinate Systems					
Coordinates	Cymarian Coordinate Systems					
Unit 4:	Definition of Dirac Delta Function, Representation as limit	4			7	4
Dirac Delta	of a Gaussian function and Rectangular function, Properties					
Function	of Dirac Delta Function					
		_				
Unit 5:	Definition, Addition and Multiplication of matrices,	6			<u>3</u>	6
Matrices	Trace and Determinant Inverse of a matrix, Special trace of				7	
	square matrices. Diagonal Symmetric and Skew-symmetric					
	Hermitian and Skew-Hermitian					
	Total	60			100	60
					'	

Distribution of Marks : 60 (Summative) + 40 (Formative)

*L- Lecture, T- Tutorial, P- Practical, M- Marks, Hr – Hours

** The underlined parts are for formative assessment only

- 1. Mathematical Physics, H K Dass, Dr. Rama Verma (S Chand Ltd.)
- 2. Vector Analysis, M R Spiegel, (McGraw Hill Education)
- 3. Matrix Operations, R Bronson (McGraw-Hill Education)
- 4. Mathematical Methods for Physicists, G.B. Arfken, H.J. Weber, F.E. Harris (Elsevier)

Syllabus of 3rd Semester Major Course

Course title: Computational and Numerical techniques in Physics -I

Course code: PHYM302

Nature of the course: Core

Total credits: 4 (Theory-2, Practical -2)

Distribution of marks:

(A) Summative Assessment -60 (Theory -30, Practical-30)

(B) Formative Assessment – 40 (Theory -20, Practical-20)

Course Objective: To impart the basic level of knowledge of computer architecture, algorithm and programming in python.

- (i) understand how a computer works
- (ii) step-by-step development of algorithm to solve a problem
- (iii) basic programming skills in python

PHYM302T: Computational and Numerical techniques in Physics -I

Unit	Content	L	Т	Р	M (Th)	Hr. (Th)
Unit 1: Introduction	Computerarchitectureandorganization,memory and Input/output devicesAlgorithm:Definition,propertiesanddevelopment.Flowchart:Concept of flowchart,symbols,guidelines,types.Illustrationwithexamples.	3		3	5	3
Unit 2: Python Basics	Introduction to Python, identifiers and keywords, python types, variable types and assignment, arithmetic operations, conversions.	3		3	<u>5</u>	3
Unit 3: Strings	Definition and properties of strings, string operations	3		3	<u>5</u>	3
Unit 4: Decision control Instruction	Use of <i>if</i> , <i>else</i> and <i>elif</i> ; use of logical operators	3		3	<u>5</u>	3
Unit 5: Loops	Use of while and for, break and continue	3		3	5	3
Unit 6 : Functions	Defining and using Functions, parameters and arguments, functional programming	3		3	5	3
Unit 7: Scope and lifetime of variables	Local, global and non-local variables	1		1	2	1
Unit 8: Modules and Packages	Python modules, importing a module, module properties. Python packages	4		4	7	4
Unit 9: Data Structures	Lists, Tuples, and Dictionaries; Sets and frozen sets; Comprehensions, Iterators, Generators	4		4	6	4
Unit 10: File Handling and Exception	Reading from and Writing to Files, Working with file paths, handling exceptions	3		3	5	3
	Total	30		30	50	30

Distribution of Marks : 60 (Summative) + 40 (Formative)

*L- Lecture, T- Tutorial, P- Practical, M(Th) – Marks in theory, Hr(Th) – Hours for theory

** The underlined parts are for formative assessment only

Syllabus of 1st Semester Minor Course

Course title: Mechanics and Properties of Matter

Course code: PHYMIN101

Nature of the course: Minor

Total credits: 4 (Theory-3, Practical -1)

Distribution of marks:

(A) Summative Assessment -60 (Theory -45, Practical-15)

(B) Formative Assessment – 40 (Theory -30, Practical-10)

Course Objective: To impart the basic level of knowledge of Newtonian Mechanics, properties of matter, simple harmonic motion, gravitation and to improve laboratory skill in mechanics and properties of matter.

- (i) Understand the basic concepts of Newtonian Mechanics
- (ii) Understand basic conservation Laws
- (iii) Analyse simple harmonic oscillators
- (iv) Understand the properties of matter
- (v) Analyse central force motion
- (vi) Examine the laws and measure the properties in laboratory.

PHYMIN101T: Mechanics and Properties of Matter (Theory)

Unit	Content	L	Τ	P	Μ	Hr
Unit 1:	1.1: Frames of Reference, Inertial Frames, Galilean	6			4	6
Newtonian	Transformations, Galilean Invariance;					
Mechanics	Dynamics of a System of Particles, Centre of Mass,				6	
	Principle of Conservation of Linear Momentum					
	1.2: The Work-Energy Theorem, Conservative and Non-	6			4	6
	conservative Forces, Conservation of Mechanical Energy,				6	
	Work done by non-conservative forces, Force as gradient of				0	
	potential energy, Energy Diagram, Stable and unstable					
	equilibrium.					
	1.3: Principle of Conservation of Angular Momentum,	8			<u>5</u>	8
	Rotation about a fixed axis, Moment of Inertia, Radius of				8	
	Gyration, Calculation of Moment of Inertia for rectangular,				0	
	cylindrical and spherical bodies, Kinetic Energy of Rotation,					
	Motion involving both translation and rotation					
Unit 2:	2.1: Relation between Elastic constants, Twisting torque on	4			<u>7</u>	4
Properties	a Cylinder or Wire.					
of Matter	2.2: Kinematics of Moving Fluids, Poiseuille's Equation	3			<u>5</u>	3
	for Flow of a Liquid through a Capillary Tube					
Unit 3:	Simple Harmonic Motion (SHM) and Oscillations,	9			15	9
Oscillations	Differential Equation of SHM and its solution, Kinetic					
	Energy, Potential Energy, Total energy and their time					
	average values, Damped oscillation, Forced oscillations,					
	Resonance, Power Dissipation and Quality Factor.					
Unit 4:	Law of gravitation. Gravitational potential energy. Inertial	9			<u>5</u>	9
Gravitation	and gravitational mass. Potential and field due to spherical					
and Central	shell and solid sphere. Motion of a particle under a central				10	
Force	force field. Two-body problem and its reduction to one-body				10	
Motion	problem and its solution. The energy equation and energy					
	diagram. Kepler's Laws. Satellite in circular orbit and					
	applications. Geosynchronous orbits. Weightlessness. Basic					
	idea of global positioning system (GPS).					
	Total	45			75	45

Distribution of Marks : 45 (Summative) + 30 (Formative)

*L- Lecture, T- Tutorial, P- Practical, M- Marks, Hr – Hours

** The underlined parts are for formative assessment only

- (i) Mechanics, D.S. Mathur, S. Chand and Company Limited
- (ii) Mechanics, Berkeley Physics, Vol.1, C.Kittel, W.Knight, et.al. Tata McGraw Hill.
- (iii) Elements of Properties of Matter, D S Mathur, S. Chand and Company Limited
- (iv) Theoretical Mechanics, M. R. Spiegel, McGraw Hill Book Company

PHYMIN101P: Mechanics and Properties of Matter (Lab)

Unit	Content (List of Experiments)	L	Т	Р	Μ	Hr
Mechanics	1. Measurements of length (or diameter) using vernier			15	25	30
and Properties	calliper, screw gauge and travelling microscope.					
of Matter	2. To study the random error in observations.					
	3. To determine the height of a building using a Sextant.					
	4. To study the Motion of Spring and calculate (a) Spring					
	constant, (b) g and (c) Modulus of rigidity.					
	5. To determine g and velocity for a freely falling body using					
	Digital Timing Technique					
	6. To determine Coefficient of Viscosity of water by					
	Capillary Flow Method (Poiseuille's method).					
	7. To determine the Modulus of Rigidity of a Wire by					
	Maxwell's needle.					
	8. To determine the elastic Constants of a wire by Searle's					
	method.					
	9. To determine the value of g using Bar Pendulum.					
	10. To determine the value of g using Kater's Pendulum					
	Total			15	25	30

Distribution of Marks : 15 (Summative) + 10 (Formative)

L- Lecture, T- Tutorial, P- Practical, M- Marks, Hr - Hours

(i)	Advanced Practical Physics for students, B. L. Flint and H.T.
	Worsnop, (Asia Publishing House)

- (ii) B.Sc. Practical Physics, C. L. Arora (S Chand)
- (iii) A Textbook on Practical Physics, K G Mazumdar, B. Ghosh (Sreedhar Publishers)

Syllabus of 2nd Semester Minor Course

Course title: Waves and Optics

Course code: PHYMIN201

Nature of the course: Minor

Total credits:4 (Theory-3, Practical -1)

Distribution of marks:

(A) Summative Assessment -60 (Theory -45, Practical-15)

(B) Formative Assessment – 40 (Theory -30, Practical-10)

Course Objective: To develop theoretical and experimental knowledge of waves, oscillations, superpositions and various phenomena of light.

Learning Outcome: After completing this course, a student will be able to

- (i) learn the basics of wave motions
- (ii) know about the wave nature of light
- (iii) observe and analyse various properties of waves and light experimentally

relate the experimental observation with theoretical foundation

PHYMIN201T: Wave and Optics (Theory)

Distribution of Marks: 45 (Summative) + 30 (Formative)

Unit	Content	L	Т	Р	Μ	Hr
Unit 1:	1.1: Linearity and Superposition Principle. Superposition of	3			<u>5</u>	3
Superposition	two collinear oscillations having equal frequencies and					
of Harmonic	different frequencies (Beats).					
Oscillations	1.2: Graphical and Analytical Methods. Lissajous Figures	2			<u>3</u>	2
	with equal and unequal frequency and their use					
Unit 2: Wave	2.1: Plane and Spherical Waves, Longitudinal and	6			<u>2</u>	6
Motion	Transverse Waves, Plane Progressive (Travelling) Waves,				8	
	Wave Equation, Particle and Wave Velocities, Differential				0	
	Equation of a Wave, Pressure of a Longitudinal Wave,					
	Energy Transport, Intensity of Wave.					
	2.2: <u>Velocity of Transverse Vibrations of Stretched Strings</u> ,	4			<u>7</u>	4
	Velocity of Longitudinal Waves in a Fluid in a Pipe,					
	Newton's Formula for Velocity of Sound, Laplace's					
TT 1: 0	Correction	0			10	0
Unit 3:	Standing (Stationary) Waves in a String: Fixed and Free	8			13	8
Harmonic	Ends, Analytical Treatment, Phase and Group Velocities,					
waves	Changes with respect to Position and Time, Energy of					
	Vibrating String, Iransfer of Energy, Normal Modes of					
	Stretched Strings, Plucked and Struck Strings, Meide's					
	Modes Open and Closed Pines					
Unit 1. Waye	Flectromagnetic nature of light definition and properties of	2			3	2
ontics	wave front Huygens principle Temporal and Spatial	2			5	2
opties	coherence					
Unit 5:	Division of wavefront and amplitude, intensity distribution	8			4	8
Interference	in an interference pattern. Young's double slit experiment.	Ũ				Ũ
	Fresnel's Biprism. Phase change on reflection: Stokes'				9	
	treatment, Interference in Thin Films: parallel and wedge-					
	shaped films, Newton's Rings: Measurement of wavelength					
	and refractive index, Michelson interferometer					
Unit 6:	Fresnel and Fraunhofer diffraction. Fresnel's Half-Period	8			<u>3</u>	8
Diffraction	Zones for Plane Wave. Fresnel diffraction pattern of a				10	
	straight edge and at a circular aperture. Fraunhofer				10	
	diffraction: Single slit. Double slit. Diffraction grating.					
	Resolving power of grating				_	
Unit 7:	Polarized light and its mathematical representation,	4			<u>3</u>	4
Polarization	Production of polarized light by reflection, refraction and				5	
	scattering. Polarization by double refraction and Huygen's				5	
	ineory, Nicol prism, Production and analysis of circularly					
	and emptically polarized light					
	Total	15			75	15
		עד [15	J.

*L- Lecture, T- Tutorial, P- Practical, M- Marks, Hr - Hours

** The underlined parts are for formative assessment only

Reading Resources

1. Waves: Berkeley Physics Course, vol. 3, Francis Crawford (Tata McGraw-Hill)

- 2. Fundamentals of Optics, F.A. Jenkins and H.E. White (McGraw-Hill)
- 3. Principles of Optics, Max Born and Emil Wolf, (Pergamon Press).
- 4. Optics, Ajoy Ghatak, (Tata McGraw Hill)
- 5. The Physics of Vibrations and Waves, H. J. Pain, (John Wiley and Sons).
- 6. The Physics of Waves and Oscillations, N.K. Bajaj, (Tata McGraw Hill)
- 7. Fundamental of Optics, A. Kumar, H.R. Gulati and Khanna, (R. Chand Publications)

PHYMIN201P: Waves and Optics (Lab)

Unit	Content (List of Experiments)	L	Т	Р	Μ	Hr
Waves and	(1) To determine the frequency of an electric tuning fork			15	25	30
Optics	by Melde's experiment and verify $\lambda^2 - T$ law					
	(2) To determine the refractive index of the Material of a					
	prism using sodium source.					
	(3) To determine the dispersive power and Cauchy					
	constants of the material of a prism using mercury source.					
	(4) To determine wavelength of sodium light using					
	Fresnel Biprism.					
	(5) To determine wavelength of sodium light using					
	Newton's Rings.					
	(6) To study the diffraction pattern of single/double slit					
	(7) To determine wavelength of a light source using plane diffraction grating.					
	(8) To determine dispersive power and resolving power					
	of a plane diffraction grating.					
	(9) To determine the specific rotation of sugar solution					
	using Polarimeter					
	(10) To analyze elliptically polarized Light by using a					
	Babinet's compensator					
	Total			15	25	30

Distribution of Marks : 15 (Summative) + 10 (Formative)

*L- Lecture, T- Tutorial, P- Practical, M- Marks, Hr – Hours

** The underlined parts are for formative assessment only

- 1. Advanced Practical Physics for students, B. L. Flint and H.T. Worsnop, (Asia Publishing House)
- 2. B.Sc. Practical Physics, C. L. Arora (S Chand)
- 3. A Textbook on Practical Physics, K G Mazumdar, B. Ghosh (Sreedhar Publishers)

Syllabus of 3rd Semester Major Course

Course title: Mathematical Physics-I

Course code: PHYMIN301

Nature of the course: Minor

Total credits: 4 (Theory-4, Practical -0)

Distribution of marks:

(A) Summative Assessment -60 (Theory -60, Practical-0)

(B) Formative Assessment – 40 (Theory -40, Practical-0)

Course Objective: To develop the requisite mathematical skills of a student to understand the fundamental topics in Physics and to prepare them for more advanced level of Physics

- (i) Write a problem in Physics in the language of Mathematics.
- (ii) Identify a range of diverse mathematical techniques to formulate and solve a problem in basic Physics.
- (iii) Analyze some of the basic mathematical concepts and methods.
- (iv) Apply the knowledge and understanding of these mathematical methods to solve problems in a number of elementary branches of Physics like mechanics, electromagnetic theory, statistical Physics, thermal Physics etc.

PHYMIN301T: Mathematical Physics-I

Unit	Content	L	Τ	Р	Μ	Hr
Unit 1:	1.1: Functions and their plotting, Continuity and	4			<u>4</u>	4
Calculus	Differentiability of functions, Approximation methods:				3	
	Taylor series, Maclaurin series.				5	
	1.2: First Order Differential Equations, Integrating	10			<u>16</u>	10
	Factor, Second Order Differential Equations,					
	Homogeneous and Inhomogeneous Equations with					
	constant coefficients. Wronskian and general solution.					
	Statement of existence and Uniqueness Theorem for					
	Initial Value Problems. Particular Integral.	10			10	10
	1.3 : <u>Calculus of functions of more than one variable</u> :	10			<u>10</u>	10
	Partial Derivatives, Exact and Inexact Differentials,				6	
	Integrating Factor, Constrained Maximization using				0	
Unit 2.	21: Vactor Differentiation: Directional Derivatives and	12			7	12
Unit 2. Vector	2.1. <u>vector Differentiation. Directional Derivatives and</u> Normal Derivative. Gradient of a Scalar Field and its	12			<u>/</u>	12
Calculus	geometrical interpretation Divergence and Curl of a				13	
Calculus	Vector Field Del and Laplacian Operators Vector					
	identities					
	2.2 Vector Integration: Ordinary Integrals of Vectors.	14			25	14
	Multiple integrals, Jacobian, Notion of Infinitesimal Line,					
	Surface and Volume Elements, Line, Surface and Volume					
	Integrals of Vector Fields, Flux of a Vector Field, Gauss'					
	Divergence Theorem, Green's and Stokes Theorems and					
	their applications (no rigorous proofs).					
Unit 5:	Definition, Addition and Multiplication of matrices,	10			<u>3</u>	10
Matrices	Transpose of a matrix, Hermitian conjugate of a matrix,				13	
	Trace and Determinant, Inverse of a matrix, Special types				15	
	of square matrices- Diagonal, Symmetric and Skew-					
	symmetric, Hermitian and Skew-Hermitian.					
	Total	60			100	60

Distribution of Marks : 60 (Summative) + 40 (Formative)

*L- Lecture, T- Tutorial, P- Practical, M- Marks, Hr - Hours

** The underlined parts are for formative assessment only

- (1) Mathematical Physics, H K Dass, Dr. Rama Verma (S Chand Ltd.)
- (2) Vector Analysis, M R Spiegel, (McGraw Hill Education)
- (3) Matrix Operations, R Bronson (McGraw-Hill Education)
- (4) Mathematical Methods for Physicists, G.B. Arfken, H.J. Weber, F.E. Harris (Elsevier)

Syllabus of 1st Semester Multidisciplinary Generic Elective Course

Course title: Evolution of Science

Course code: PHYGEC101

Nature of the course: Generic Elective

Total credits: 3 (Theory-3, Practical -0)

Distribution of marks:

(A) Summative Assessment -60 (Theory -60, Practical-0)

(B) Formative Assessment – 40 (Theory -40, Practical-0)

Course Objective: To provide students with

- (i) understanding of the historical development of scientific knowledge,
- (ii) knowledge of modern physics
- (iii) knowledge of the role of experimentation and observation in advancing scientific knowledge.
- (iv) Understanding of the impact of science on society

- (i) attain knowledge of the development of science from antiquity to the present era.
- (ii) comprehend the noteworthy scientific breakthroughs, inventions, and contributions that have paved the way for modern science
- (iii) assess the influence of science on human civilization and how scientific progress has positively impacted societal progress

Course Code: PHYGEC101T

PHYGEC101: Evolution of Science

Distribution of Marks: 60 (Summative) + 40 (Formative)

Unit	Content	L	Т	Р	M#	Hr
Unit 1	Invention of wheel and beginning of science, Science for progress. Science in ancient world Medieval science Renaissance and industrial revolution: Rise of western science Contributions of Aristotle, Galileo Galilei, Robert Hooke, Darwin, Kepler etc. Contributions of Sir Isaac Newton: Laws of motion, Universal law of Gravitation	14			19	14
Unit 2	Nineteenth century and beginning of modern science: Developments of electricity and magnetism, Maxwell's contributions, Contributions of Thomas A. Addison	13			17	13
Unit 3	Einstein and Special Theory of Relativity: The paradigm shift. Quantum Theory, Quantum generation, The Second creation: development of concept of field quantisation, ups and downs. Nuclear era: space science and technology. Electronic age and birth of computers. Laser and optical evolution. Contemporary science and India's contribution.	18			24	18
	Total	45			60	45

For Summative Assessment

*L- Lecture, T- Tutorial, P- Practical, M- Marks, Hr – Hours

Reading resources:

a) The Scientific Revolution by Steven Shapin.

b) A history of physics in its elementary branches, including the evolution of physical laboratories by F. Cajori.

c) A brief history of Physics by P. F. Kisak

Syllabus of 1st Semester Skill Enhancement Course

Course title: Electrical Wiring and Maintenance

Course code: PHYSEC101

Nature of the course: SEC

Total credits: 3 (Theory-1, Practical -2)

Distribution of marks:

(A) Summative Assessment -60 (Theory -20, Practical-40)

(B) Formative Assessment – 40 (Theory -13, Practical-27)

Course Objective: (i)To develop skill of the students in domestic wiring and troubleshooting through hands-on mode.

(ii) To enable them to prepare working diagram of household electrical wiring.

Learning Outcome: After successful completion of this course, students will be able to identify various electrical devices, circuits and their symbols, familiar with schematic and wiring diagrams of electrical devices, understand electrical installation plan, perform and practice any type of domestic wiring and its maintenance.

PHYSEC101T: Electrical Wiring and Maintenance

Distribution of Marks: 20	(Summative) + 13	(Formative)
---------------------------	------------	--------	-------------

Unit	Content	L	Т	Р	M#	Hr
Unit 1:	Introductory concepts and basic circuit	4			5	4
Basics of	elements: Concept of Electric current and					
Electrical	its unit, Conductors, Insulators,					
Circuits	Resistance, potential and potential					
	difference-unitsdifferent voltage sources					
	(AC and DC)- Effects of current Ohm's					
	law, heating effect of current, Joule's law					
	of heating, electric power, electric energy,					
	Analysis of DC circuits; Kirchhoff's laws:					
	KCL, KVL, Current and voltage drop					
	across the DC circuit elements. Series					
	circuit, parallel circuit, combination circuit					
	AC current and voltage, single-phase and					
	three-phase alternating current sources,					
	Transformers, transmission of AC Unit of					
	power and energy, kWh, KVA. Different					
	types of light sources like filament bulb,					
	tube (fluorescent) light, CFL, LED and					
	Neon light, Different types of switches,					
	two-way, three-way, lour-way switches,					
	domestic electrical appliances and their					
	nower					
Unit 2.	Various types of tools and wiring	2			3	2
Types of	accessories Basics of wiring casing-	2			5	2
Wiring	capping PVC conduit wiring concealed					
, ming	wiring (PVC/MS) comparison of different					
	wire joint (flat and straight), types of					
	wiring systems: selection and design of					
	wiring schemes for particular situation					
	(domestic), selection of wire, cables,					
	wiring accessories and use of protective					
	devices i.e., MCB, ELCB etc.; rating and					
	current carrying capacity of wires, cables,					
	fuse, switches, socket, MCBs, ELCBs and					
	other electrical accessories.					
Unit 3:	Different types of electrical symbols used	6			8	6
Electrical	in domestic installation and power systems					
Drawing	as per BIS code. Electrical Schematics.					
and	Power circuits and control circuits.					
Symbols	Reading of circuit schematics.					
	Understanding the connections of elements					
	and identifying current flow and voltage					
	drop. Wiring diagram of light, fan, bell and					

	alarm circuit, staircase wiring, schematic diagram of lighting system of small room, hall and conference room, circuit breakers, inverter connections, Design and drawing of panels, distribution board using MCB, ELCB, main switches and change over switches for domestic installations, Estimation of electrical materials for domestic wiring				
Unit 4: Electrical Protection and Safety	Earthing: Concept and purpose of earthing, different types and procedure of earthing, drawing of plate and pipe earthing, test material and costing and estimating. Safety precautions: Effect of electric shock on human body, first aid for electric shock- rules and standards in house wiring, Introduction to Lightning Arresters – Types - Necessity and Advantages - Layout and Installation, Electrical Hazards and its effects - Basic safety introduction - Personal protection and PPE - Basic injury prevention - Basic first aid - Hazard identification and avoidance	3		4	3
Total		15		20	

PHYSEC101P: Electrical Wiring and Maintenance

Distribution of Marks: 40 (Summative) + 27 (Formative)

Unit	Content	L	Т	Р	M#	Hr
Unit 1:	1. Safety use in electricity, shock treatment			30	40	60
Basics of	methods, safety precautions.					
Electrical	2. To study & find the specifications of					
Circuits	various types of wires and cables.					
	3. To measure the gauge of a given wire					
	with the help of a wire gauge.					
	4. Prepare a chart of wattage of different					
	electrical items/ appliances like CFL bulb,					
	LED bulb, Tube light, Ceiling Fan, Table					
	Fan, Gyger, Mixer-grinder, Refrigerator,					
	Water pump, Iron, Xerox Machine,					
	Inverter, TV, Hanging/ pendant Light,					
	Microwave oven etc.					
	5. Measurements of ac voltage with					
	multimeter.					
	6. To connect the wires with different					
	electrical accessories.					
	7. Skinning the cable and joint practice on					
	single and multi-strand wire					
	8. To make a main switch board for house					
	wiring					
	9.Installation of common electrical					
	accessories such as switch, holder, plug on					
	board					

For Summative Assessment

*L- Lecture, T- Tutorial, P- Practical, M- Marks, Hr – Hours

- 1. Elementary Electrical Engineering- M.L. Gupta (New Heights)
- 2. Electrical Installation and Estimating- Surjit Singh, (Dhanpatrai and sons)
- 3. A course in Electrical Installation, Estimating and costing- J B Gupta, S K Kataria and Sons
- 4. A textbook in Electrical Technology B L Theraja (S Chand & Co).
- 5. A textbook of Electrical Technology A K Theraja