DEBRAJ ROY COLLEGE (AUTONOMOUS)

POST GRADUATE SYLLABUS

M.A./M.Sc. in Mathematics

Department of Mathematics Debraj Roy College (An Autonomous College under Dibrugarh University) Circuit House Road, Golaghat-785621(Assam)

	Core(Fix)	DSE(any one)	GE	AEC	TOTAL
Sem I	1. Abstract Algebra (4 Credit)	1. Tensor & Classical Mechanics (4 Credit)	-	1 Course X 2 Credit= 2	18
	2. Differential Equations (4 Credit)	2. Combinatorics and Probability (4 Credit)			
	3. Real Analysis (4 Credit)				
Sem II	1. Complex Analysis (4 Credit)	1. Magneto hydrodynamics (4 Credit)	Foundation in Mathematics (4 Credit)	-	20
	2. Linear Algebra (4 Credit)	2. Fuzzy Set Theory (4 Credit)			
	3. Numerical Analysis (4 Credit)	3. Non-linear Dynamical System and Chaos (4 Credit)			
		4. Operations Research (4 Credit)			
		5.Mathematical Biology (4 Credit)			
Sem III	1. Functional Analysis (4 Credit)	1. Advanced Algebra (4 Credit)	Mathematical Modelling (4 Credit)	1 Course X 2 Credit= 2	22
	2. Graph Theory (4 Credit)	2. Dempster-Shafer Theory of Evidence (4 Credit)			
	3. Numerical Partial Differential Equation (4 Credit)	3. Fluid Dynamics (4 Credit)			
		4. Network Science (4 Credit)			
Sem IV	1. Mathematical Methods (4 Credit)	1. Algebraic Graph Theory (4 Credit)	-	-	20
	2. Mathematical Modelling (4 Credit)	2. Computational Fluid Dynamics (4 Credit)			
	3. Measure Theory (4 Credit)	3. Game Theory (4 Credit)			
	4. Mathematics Teaching (4 Credit) OR Dissertation (4 Credit)	4. Topology (4 Credit)			
		5. Wavelet Analysis (4 Credit) 20 Total Credit 8			
Total Cre	edit			-	80

Department of Mathematics: Debraj Roy College Title of the Course: Abstract Algebra Paper Number: 1C1 Category : CORE Year 1 Credits 4 Course Code: MTHC1 Semester I Instructional Hours (Per week) Lecture3 Tutorial 1 Lab Practical 0 Total 4

Objectives of the	The students are expected to develop a strong foundation in Algebra with special
Course	emphasis on finite groups and algebraic number theory.
Learning	After going through this course the students will be able to
Outcome	(i) Describe the Group theoretic notions of class equation and the related
	results.
	(ii) (ii) Discuss three important classes of Ring structures, viz., the Principal
	ideal Domain, Euclidean domain and the unique factorization domain.
Course Outline	Unit I: A brief review of groups, their properties and examples, subgroups,
	isomorphism theorems, symmetric, alternating and dihedral groups.
	Marks: 10 L :8 , T: 2
	Unit II: Group action, The class equation of finite groups, Sylow theorems, Direct
	products of groups.
	Marks: 15 L :11 , T:4
	Unit III: A brief review of Rings, properties and examples. Ideals, Homomorphism and
	Quotient Rings, Field of quotients of an Integral Domain, Unique factorization domain,
	Principal Ideal Domain, Euclidean Domain.
	Marks: 15 L :11 , T: 4
	Unit IV: Extension fields; The fundamental theorem of Field Theory, Splitting Fields,
	Zeros of an irreducible Polynomial. Classification of Finite Field, Structure of Finite
	Fields, Subfields of a Finite Field.
	Marks: 20 L :15 , T: 5
Recommended	1. Herstein, I. N. (1975). Topics in Algebra Wiley. Eastern Limited.
Text	2. Dummit, D. S., Foote, R. M. (2004). Abstract Algebra. Hoboken: Wiley.+
	3. Gallian, J. A. (2013). Contemporary Abstract Algebra, New Age International.
Reference Books	1. Hungerford, T. W., Algebra. (1974). Springer-Verlag. New York.
	2. Bhattacharya, P. B., Jain, S. K., Nagpaul, S. R. (1994). Basic Abstract Algebra.
	Cambridge University Press.
Website and E-	http://www.algebra.com/
learning Source	

Department of Mathematics : Debraj Roy College Title of the Course : Differential Equations Paper Number : 1C2 Category CORE Year 1 Credits 4 Course Code: MTHC2 Semester I Instructional Hours (Per week) Lecture: 3 Tutorial : 1 Lab Practical :0 Total :4

Prerequisites for the Course	Knowledge of ordinary differential equations of
	first order and second order and their General
	Solutions are essential. Knowledge of partial
	differential equations of first order is essential.
Objectives of the Course	The students will learn the governing
	mathematical formulations and their solutions of
	various physical problems.
Learning Outcome	After going through this course the students will
	be able to
	(i) Formulate the governing
	Mathematical equations of Physical
	Problems.
	(ii) (ii) Solve Differential Equations using
	various Mathematical tools
Course outline	Unit I: Ordinary Differential Equations: Marks 15,
	L: 11, T: 4
	Series solutions of second order linear differential
	equations, Legendre equation and Legendre
	polynomials, Bessel equation and Bessel functions,
	Systems of first-order linear differential equations.
	Unit II: Partial Differential Equations of Second
	Order: Marks 15, L: 12, T: 4
	Liner partial differential equations of second order
	with constant co-efficient, Characteristic curves of
	second order equations, Reduction to canonical
	forms, Separation of variables, Solution of non
	linear equations of the second order by Monge's
	method
	Unit III, Londono equation Marco equations
	Unit III: Laplace equation, Wave equations,
	Diffusion Equation: Marks 15, L: 12, T: 4
	The occurrence of Laplace's equation in physics
	The occurrence of Laplace's equation in physics, Elementary solution of Laplace's equations,
	Boundary value problems, Solution of Laplace's
	equation by separation of variable, The occurrence
	equation by separation of variable, the occurrence

	•
	of the wave equation in Physics, Elementary solutions of the one-dimensional Wave equation, Solution of the Wave equation by separation of variables The occurrence of the Diffusion equation in Physics, Elementary solutions of the Diffusion equation, Solution of the Diffusion equation by separation of variables. Unit IV: Methods of Green's functions Marks 15, L: 10, T: 3
	Green's function, Green's function for the Laplace's equation, Green's function for the wave equation, Green function for diffusion equation
Reference Books	 Boyce, W. E., DiPrima, R. C. (2009), Elementary Differential Equations and Boundary Value Problems, 9th Edition, Wiley India Piaggio, E. T. H. (1985), Differential Equations, CBS Publishers and Distributors Bhamra, K. S. (2010), Partial Differential Equations, PHI Learning Pvt. Ltd. 4. Ayres, F (Jr.). (1972), Theory and Problems of Differential Equations, SI (Metric) edition, Schaum's outline series, Mc Graw Hill book Co.
Website and E-learning Source	http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics, http://www.opensource.org

Department of Mathematics : Debraj Roy College Title of the Course : Real Analysis Paper Number : 1C3 Category CORE Year 1 Credits 4 Course Code: MTHC3 Semester I Instructional Hours (Per week) Lecture: 3 Tutorial : 1 Lab Practical : 0 Total : 4

Objectives of the Course To build up a strong analytical foundation	
	Real Analysis.
Learning Outcome	After going through this course the students will
	be able to
	(i) Describe the properties of the Real
	numbers.
	(ii) (ii) Analyze the properties of

	advanced differentiation and
	Integration of real valued functions in
	one or multiple variables.
	(iii) (iii) Describe R as a matric space and
	identify its special metric properties.
Course Outline	Unit I: Preliminaries: Marks: 20 L: 15 T: 5
	Countable and uncountable sets, Real number
	system as a complete ordered field, Archimedean
	property, convergence of sequence, continuity and
	uniform continuity. Metric spaces, compactness,
	completeness, Bolzano-Weierstrass theorem,
	Heine-Borel theorem; connectedness and
	continuity.
	Unit II: Sequences of Functions: Marks: 13 L: 10 T:
	3
	Sequences and series of functions, Pointwise and
	uniform convergence, Monotonic functions, types
	of discontinuity, Absolute Convergence, functions
	of bounded variation, Continuous functions of
	bounded variation.
	Unit III: Functions of Several Variables: Marks: 12
	L: 9 T: 3
	Directional derivatives, Continuity, total
	derivatives, Jacobian matrix, the chain rule and its
	matrix form, the mean value theorem for
	differentiable functions, sufficient condition for
	differentiability.
	Unit IV: Riemann-Stieltjes Integral: Marks: 15 L:
	11 T:4
	Riemann-Stieltjes integrals, The R-S integral as a
	limit of sum, Classes of R-S integrable functions,
	Algebra of R-S integrable functions, Relation
	between Riemann and Riemann-Stieltjes integral.
Recommended Text	1. Bartle, R. G., Sherbert, D. R. (2011). Introduction
	to real analysis. Hoboken, NJ: Wiley. (For Unit 1
	and 2)
	2. Apostol, T.M. (2008). Mathematical Analysis.
	Narosa Publishing House. (For Unit 3 and 4).
	3. Fitzpatrick, P. M., (2010). Advanced Calculus.
	Orient Black Swan. 4. Carothers, N. L. (2009). Real
	Analysis. S Chand. Reference Books 1. Rudin, W.
	(1964). Principles of mathematical analysis . New
	York: McGraw-hill. 2. Simmons, G. F. (1963).
	Introduction to Topology and Modern Analysis.
	McGraw Hill. 3. Kaczor, W. J., Nowak, M. T.,
	Nowak, N. T. (2000). Problems in Mathematical
	Analysis: Integration. American Mathematical Soc.
	4. Kumaresan, S. (2005). Topology of Metric

	Spaces. Narosa.
Website and Elearning Source	http:/www.mathforum.org, http:/opensource.org

Department of Mathematics : Debraj Roy College Title of the Course : Complex Analysis Paper Number : 2C1 Category CORE Year 1 Credits 4 Course Code: MTHC4 Semester II Instructional Hours (Per week) Lecture: 3 Tutorial : 1 Lab Practical : 0 Total : 4

Objectives of the Course	It is expected that the students will be exposed to an advanced course in Complex Analysis.	
Learning Outcome	After going through this course, the students will	
	be able to	
	(i) Define various functions of Complex	
	variables.	
	(ii) (ii) Discuss the principles involved with	
	Complex Integration.	
	(iii) Obtain the conformal mappings of standard	
	complex valued functions.	
Course Outline	Unit I : Functions of Complex variable: Marks 12	
	L: 9 T: 3	
	Functions of Complex variables, Mappings by	
	exponential functions, limits, continuity,	
	derivatives, Cauchy-Riemann equations, Analytic	
	functions, Harmonic functions, Reflection	
	principles, The exponential functions, logarithmic	
	function, Branches and derivatives of logarithm,	
	Complex exponents, Trigonometric functions,	
	Hyperbolic functions, Inverse trigonometric	
	functions.	
	Unit II : Integration of Complex functions: Marks	
	12 L: 9 T: 3	
	Basic properties of Complex Integration, Cauchy's	
	Theorem, Morera's Theorem, Cauchy Integral	
	formula, Laurent's series, The Maximum modulus	
	principle, Schewarz lemma, Liouville's theorem.	
	Unit III: Series of Complex variables: Marks 12 L: 9	
	T:	
	Convergence of sequences, Convergence of series,	
	Taylor series, Laurent Series, Absolute and uniform	

transformation w = sin z; mappings by z2 and Branches of z1/2 , square roots of polynomials, preservation of angles, scale factor, local inverses, harmonic conjugates, transformation of harmonic functions, Applications.Recommended Text1. Brown, J. W., Churchill, R. V. (2009). Complex variables and applications. Boston: McGrawHill Higher Education. 2. Ponnusamy, S. (2002). Foundations of functional analysis. CRC Press. 3. Apostol, T.M. (2008). Mathematical Analysis. Narosa Publishing House. Reference Books 1. Karunakaran, V. (2005). Complex analysis. Alpha Science Int'l Ltd. 2. Rudin, W. (2006). Real and complex analysis. Tata McGraw-Hill Education. 3. Hahn, L. S., Epstein, B. (1996). Classical complex analysis. Royal Society of Chemistry.Website and E-learning Source		 convergence of Power series, Uniqueness of series representation. Unit IV : Calculus of Residues: Marks 12 L: 9 T: 3 Residue at a finite point, Residue at the point at infinity, Residue Theorem, Number of zeros and poles, Argument principle, Rouche's theorem, evaluation of Integrals, Application of residues, Unit V : Conformal Mapping: Marks 12 L: 9 T: 3 Linear Transformation, Linear fractional transformation, mappings of upper half plane, The
 variables and applications. Boston: McGrawHill Higher Education. 2. Ponnusamy, S. (2002). Foundations of functional analysis. CRC Press. 3. Apostol, T.M. (2008). Mathematical Analysis. Narosa Publishing House. Reference Books 1. Karunakaran, V. (2005). Complex analysis. Alpha Science Int'l Ltd. 2. Rudin, W. (2006). Real and complex analysis. Tata McGraw-Hill Education. 3. Hahn, L. S., Epstein, B. (1996). Classical complex analysis. Royal Society of Chemistry. 		Branches of z1/2 , square roots of polynomials, preservation of angles, scale factor, local inverses, harmonic conjugates, transformation of harmonic
Website and E-learning Source	Recommended Text	 variables and applications. Boston: McGrawHill Higher Education. 2. Ponnusamy, S. (2002). Foundations of functional analysis. CRC Press. 3. Apostol, T.M. (2008). Mathematical Analysis. Narosa Publishing House. Reference Books 1. Karunakaran, V. (2005). Complex analysis. Alpha Science Int'l Ltd. 2. Rudin, W. (2006). Real and complex analysis. Tata McGraw-Hill Education. 3. Hahn, L. S., Epstein, B. (1996). Classical complex
	Website and E-learning Source	

Department of Mathematics : Debraj Roy College Title of the Course : Linear Algebra Paper Number : 2C2 Category CORE Year 1 Credits 4 Course Code: MTHC5 Semester II Instructional Hours (Per week) Lecture: 3 Tutorial : 1 Lab Practical : 0 Total : 4

Objectives of the Course	To build up a foundation of Linear algebra
Learning outcome	After going through this course, student will able
	 to (i) Give theoretical treatment to solve system of linear equations. (ii) (ii) Discuss basic properties of inner products spaces and operators.

Course Outline	Unit I: Vector Spaces: Marks 10 L: 8, T: 2 Vector space, Subspaces, Linearly independent set, Basis and dimension, Sums and direct Sums Unit II: Linear maps: Marks 10 L: 8, T: 2 Linear transformation and Operator, matrix representations of linear transformations, the rank and nullity theorem, Invertibility Unit III: Eigenvalues and Eigenvectors: Marks 12 L: 9, T: 3 Eigenvalues and Eigenvectors, Invariant Subspaces, Polynomials applied to operators, Upper Triangular, Diagonal matrices Unit IV: Inner Product Spaces and Operators: Marks 14 L: 10, T:4 Inner products, norms, orthogonal bases, linear functional and adjoints, Self adjoint and normal operators, spectral theorem, Normal operators on Real Inner product spaces, Positive operators, Isometries. Unit V: Operators on Complex Vector Spaces: Marks 14 L:10, T:4 Generalized Eigenvectors, Characteristic Polynomial, Decomposition of an operator,
Recommended Text	 minimal polynomial, Jordan form. 1. Dummit, D. S., Foote, R. M. (2004). Abstract algebra. Hoboken: Wiley. 2. Saikia, P. K. (2014). Linear Algebra. Pearson Education India. 3. Axler. S. (1997). Linear Algebra Done Right. Springer.
Reference Books	 Artin, M. (2015). Algebra. Pearson Ed. India. Strang, G. (2005). Linear Algebra and its Applications. Cengage Learning. Bhattacharya, P. B., Jain, S. K., Nagpaul, S. R. (1994). Basic abstract algebra. Cambridge University Press.
Website and E-learning Source	MIT OCW 18.06SC: Linear Algebra by Gilbert Strang. http://ocw.mit.edu/(Also available on Youtube)

Department of Mathematics : Debraj Roy College Title of the Course : Numerical Analysis Paper Number : 2C3 Category CORE Year 1 Credits 4 Course Code: MTHC6

Semester II Instructional Hours (Per week) Lecture: 3 Tutorial : 1 Lab Practical : 0 Total : 4

Objectives of the Course	To give a theoretical treatment to the numerical methods used
	to solve various problems of science and engineering
Learning outcome	After completing this course learners will be able to (i) Use and
	analyze various numerical methods in solving scientific problem
	(ii) Discuss various issues in a numerical techniques such as
	convergence and stability (iii) Fit polynomial and exponential
	function to a given set of data.
Course Outline	Unit I: Floating point representation and Errors: Marks 5 L: 4, T:
	Review of Taylor series, floating point representation, loss of
	significance
	Unit II: Solution of system of equations: Marks 15 L: 11, T: 4
	Doolittle and Crout's decomposition, Successive approximation
	by Gauss Jacobi, Gauss SeidaL Methods
	Unit III: Numerical Integration: Marks 15 L: 11, T: 4-
	Cotes formula, Gaussian quadrature Unit IV: Solution of
	Ordinary Differential Equations: Marks 15 L: 11, T: 4
	Stability and Convergence of numerical methods, Runge-Kutta
	method of second, third and fourth order, General explicit
	method, Adam-Bashforth, General implicit method,
	AdamMoultan, Milne-Simpson method.
	Unit V: Curve Fitting: Marks 10 L: 8, T:2
	General Least Square Method, Normal equations, Fitting of a
	polynomial (second and third degree), Fitting of exponential
	curves, Chebyshev polynomials.
Recommended Text	1. Kincaid, D., Cheney, W. (2002). Numerical Analysis:
	Mathematics of Scientific Computing. AMS.
	2. Atkinson, K., Han, W. (2003). Elementary Numerical Analysis,
	John Wiley & Sons.
Reference Books	1. Hilderbrand, F.B. (1987). Elementary Numerical Analysis.
	Dover publications.
	2. Conte, S.D. (1980). Elementary Numerical Analysis:
	Algorithmic approach. Tata McGraw Hills
	3. Madhumangal, P. (2009). Numerical Analysis for Scientist and
	Engineers. Narosa Pub. House.
Website and E-learning Source	http://mathform.org.http://ocw.mit.edu/ocwweb/Mathematics,
Website and Elicarning Jource	

Department of Mathematics : Debraj Roy College Title of the Course : Functional Analysis Paper Number : 3C1 Category CORE Year 2

Credits 4 Course Code: MTHC7 Semester III Instructional Hours (Per week) Lecture: 3 Tutorial : 1 Lab Practical : 0 Total : 4

Objectives of the Course	(i) To introduce a common mathematical
	framework for both algebraic and topological
	structures. (ii) To discuss generalization of classical
	analysis. To present some practical applicability of
	the theory developed.
Loarning outcome	After going through this course, the students will
Learning outcome	be able to
	(i) Describe the interaction of algebraic
	and topological properties.
	(ii) (ii) Deal with problems related to the
	fundamental theorems like Hanh-
	Banach theorem, Closed Graph
	theorem, Open Mapping theorem and
	Uniform Boundedness Principle
	besides developing a sound basis of
	Banach and Hilbert spaces.
	solving problems of linear equations,
	differential equations, integral
	equations and some issues in
	Quantum Mechanics. Pre-requisites
	Basic knowledge of Linear Algebra and
	Metric Space.
Course outline	Unit I: Normed and Banach spaces: Marks 15 L
	:12, T: 3
	Definitions, examples and basic properties of
	Normed spaces and Banach spaces. Subspace,
	Compactness and finite dimension, Definitions,
	examples and basic properties of Bounded linear
	operators and functionals, Dual space.
	Unit II: Fundamental theorems for Normed and
	Banach Spaces: Marks 15 L :11, T: 4
	Open mapping theorem and its consequences,
	Closed graph theorem and its consequences,
	Uniform boundedness principal. Hanh-Banach
	Theorem and its consequences. Adjoint of
	bounded linear operator.
	Unit III: Hilbert Spaces: Marks 15 L :11, T: 4

Website and E-learning Source	<pre>http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics, http://www.opensource.org</pre>
	analysis. CRC Press. 2. Jain, P. K., Ahuja, O. P., Ahmed, K. (1995). Functional Analysis. New Age International (P) Limited.
Recommended Texts Reference Books	 Kreyszig, E. (1978). Introductory functional analysis with applications. New York: Wiley. Choudhary, B., Nanda, S. (1989). Functional analysis with applications. Wiley. Limaye, B. V. (2014). Functional Analysis. New Age International P Ltd. Ponnusamy, S. (2002). Foundations of functional
	Banach fixed point theorem and its applications to Linear Equations, Differential Equations and Integral Equations. Multiplication and Differential Operator in Quantum Mechanics.
	Definitions, example and basic properties of inner- product spaces and Hilbert spaces, Orthogonal Complements and direct sums, Orthogonal sets and sequences, Series related to Orthonormal sequences and sets, Total orthonormal sets. Legendre, Hermite and Laguerre polynomials, Riesz's representation theorem. Hilbert -Adjoint operator, Self Adjoint operator. Unit IV: Some Applications: Marks 15 L :11, T: 4

Department of Mathematics : Debraj Roy College Title of the Course : Graph Theory Paper Number : 3C2 Category CORE Year 2 Credits 4 Course Code: MTHC8 Semester III Instructional Hours (Per week)

Prerequisites for the Course	Basic concepts of enumeration are essential
Objectives of the Course	Students will learn few interesting topics of Graph
	Theory as well as certain fascinating applications
	of various types of Graphs.
Learning outcome	After going through this course the students will
	be able to identify various types of graphs and
	their properties.
Course Outline	Unit I : Graphs and Trees: Marks 15, L: 12, T: 4
	Graph, Basic definitions, Isomorphism of graphs,
	Subgraphs, Walks, Paths, Circuits, Connected
	graphs, Disconnected graphs, Trees, Some
	properties of trees, Distance and centers in a tree,
	Rooted and binary trees, On counting trees,
	Spanning trees, Cut-sets, Some properties of a cut-
	set, Connectivity and Separability, Blocks.
	Unit II : Operations On Graphs: Marks 15, L: 11, T:
	4
	Planar and nongraph, Matrix representation of
	graphs, Incidence matrix, Adjacency matrix, Graph
	matching, Graph coverings.
	Unit III : Directed Graphs and Enumeration of
	Graphs: Marks 15, L: 11, T: 4
	Definition of Directed graphs (digraph), Some
	types of digraphs, Digraphs and binary relations,
	Directed paths and connectedness, Acyclic
	digraphs and decyclization, Enumeration of graphs,
	Types of enumeration, Counting labeled trees,
	Counting unlabelled trees.
	Unit IV : Graph Algorithms: Marks 15, L: 11, T: 3
	Algorithms, Shortest-path algorithms, Transitive
	closure of a digraph, Activity network, Topological
	sorting, Critical path, Graphs in computer
	programming (basic concepts).
Recommended Text	1. Deo, N. (2017). Graph theory with applications
	to engineering and computer science. Courier
	Dover Publications.
	2. Harary, F. (2001). Graph Theory. Narosa
	Publishing House.
	3. West, D. B. (2002). Introduction to Graph
	Theory. Prentice Hall India.

	Theory. Dover Publications.
	2. Bollobas, B. (1998). Modern Graph Theory.
	Springer.
	3. Gross, J. L., Yellen, J. (2004). Handbook of Graph
	Theory. CRC Press.
	4. Vasudev, C. (2006). Graph Theory with
	Applications. New Age Int. (P.). Ltd
Website and E-learning Source	http://mathforum.org,
	http://ocw.mit.edu/ocwweb/Mathematics

Department of Mathematics : Debraj Roy College Title of the Course : Numerical Partial Differential Equation Paper Number : 3C3 Category CORE Year 2 Credits 4 Course Code: MTHC9 Semester III Instructional Hours (Per week)

Objectives of the Course	The objective of this course is to introduce various numerical	
	techniques to solve partial differential equations	
Learning outcome	After going through this course, the students will be able to	
	(i) Describe various numerical techniques.	
	(ii) (ii) Solve Partial Differential Equations numerically.	
Course Outline	Unit I: PDE and its classifications: Marks 15 L: 9, T: 3	
	Basics of PDE, classification of PDE (elliptic, parabolic and	
	hyperbolic), Laplace equation, wave equation, convection-	
	diffusion equation, initial values and boundary conditions, well	
	posed problems.	
	Unit II: Elliptic PDE: Marks 15 L: 12, T: 4	
	General features of elliptic PDE, finite difference solutions of	
	Laplace equation, consistency order and convergence, iterative	
	methods of solution, ADI method, finite difference solution of	
	Poisson equation,	
	Unit III: Parabolic PDE: Marks 15 L: 12, T: 4	
	General features of parabolic PDE, finite difference method,	
	FTCS method, consistency, order, stability and convergence, BTCS	
	and Crank-Nicolson method	
	Unit IV: Hyperbolic PDE: Marks 15 L: 12, T: 4	
	General features of hyperbolic PDE, finite difference method,	
	FTCS method, Lax-Wendroff method, upwind method, BTCS	

	method
Recommended Text Books	1. Hoffman, J. D., Frankel, S. (2001). Numerical methods for
	engineers and scientists. CRC Press.
	2. Smith, G. D. (1985). Numerical Solutions to Partial Differential
	Equations, Oxford University Press.
Reference Book	1. Lapidus, L., Pinder, G. F. (2011). Numerical solution of partial
	differential equations in science and engineering. John Wiley &
	Sons.
	2. Burden, R., Faires, D., Burden, A. M. (2015). Numerical
	Analysis. Cengage Learning.
Website and E-learning Source	https://www.wias-
	berlin.de/people/john/LEHRE/NUM_PDE_FUB/num_pde_fub.pdf,
	http://www.ehu.eus/aitor/irakas/fin/apuntes/pde.pdf

Department of Mathematics : Debraj Roy College Title of the Course : Mathematical Methods Paper Number : 4C1 Category CORE Year 2 Credits 4 Course Code: MTHC10 Semester IV Instructional Hours (Per week)

Objections of the Course	The chieve of the second is to fourilisation contains
Objectives of the Course	The objective of the course is to familiarize various
	essential procedure and tools which are frequently
	employed in analytical solution of problems arise
	in physical science. The technique of calculus of
	variations will be discussed for solving complex
	optimization problems in physical science,
	geometry and many other areas of interest in
	current trend
Learning outcome	After going through this course the students will
	be able to (i) Describe various mathematical
	methods to solve integral equations. (ii) Solve wide
	range of problems in physical sciences using
	calculus of variation.
Course Outline	Unit I : Integral Equations: Marks 20 L:14, T: 5
	Definition of Integral Equation, Eigen values and
	Eigen functions: Reduction to a system of algebraic
	equations, Reduction of ordinary differential
	equations into integral equations. Fredholm
	integral equations with separable kernals, Method

	of successive approximations, Iterative scheme for Fredholm Integral equations of second kind, Conditions of Uniform convergence and uniqueness of series solution. Volterra Integral Equations of second kind, Resolvant kernel of Volterra equation and its results, Application of iterative scheme to Volterra integral equation of the second kind. Convolution type kernels. Unit II: Fourier Transform: Marks 12 L:9, T: 4
	Fourier Integral Transform, Properties of Fourier Transform, Fourier sine and cosine transform, Application of Fourier transform to ordinary and partial differential equations of initial and boundary value problems. Evaluation of definite integrals. Unit III: Calculus of Variation with one independent variable: Marks 14 L: 11, T: 3
	Basic ideas of calculus of variation, Euler's equation with fixed boundary of the functional $I[y(x) = \int_{a}^{b} f(x, y, y') dx$
	containing only the first order derivative of the only dependent variable with respect to one independent variable. Variational problems with functional having higher order derivatives of the only dependent variable, applications.
	Unit IV : Calculus of Variation with Several variables: Marks 14 L: 11, T: 3 Variational problems with functional dependent on functions of several independent variables having first order derivatives, Variational problems in parametric form, variational problems with subsidiary condition (simple case only), Isoperimetric problems, Applications.
Recommended Text	 Gupta, A. S. (1996). Calculus of variations with applications. PHI. Parashar, B. P. (1994). Differential and Integral Equations. CBS Pub and Distributors. Raisinghania, M. D. (2007). Integral equations and boundary value problems. S.Chand.
Reference Books	 Mikhlin, S. G. (1960). Linear integral equations (translated from Russian). Hindustan Book Agency. Hildebrand, F. B. (2012). Methods of applied mathematics. Courier Corporation.

	 Spiegel, M. R. (1986). Theory and Problems of Laplace Transform. Courant, R., Hilbert, D. (2008). Methods of Mathematical Physics: Partial Differential
	Équations. John Wiley & Sons.
Website and E-learning Source	http://mathforum.org,
	http://ocw.mit.edu/ocwweb/Mathematics

Department of Mathematics : Debraj Roy College Title of the Course : Mathematical Modelling Paper Number : 4C2 Category CORE Year 2 Credits 4 Course Code: MTHC11 Semester IV Instructional Hours (Per week)

Objectives of the Course.	The objective of the course is to introduce the
	concept of representation of real world situations
	into Mathematical situations.
Learning Outcome	After going through this course the students will
	be able to
	(i) Make Mathematical Models of real life problems
	(ii) (ii) Solve real word problems through
	Mathematical Modelling
Course Outline	Unit I: Introduction: Marks 15 L: 12, T: 3
	The technique on Mathematical Modelling, Mathematical Modelling through Calculus, Mathematical Modelling through ordinary differential equation of first order, Linear Growth and Decay model, Nonlinear Growth and Decay model, Mathematical Modelling in dynamics through ordinary differential equation of first order. Unit II: Mathematical Modelling through System of Differential Equations: Marks 15 L: 12, T: 3
	Mathematical Modelling in population dynamics,
	Mathematical Modelling of Epidemics through
	system of differential equation of first order,
	Mathematical Modelling in Economics based on
	system of differential equation of first order,

	Mathematical Modelling in Medicine, Arms, Race
	Battles and International Trade in terms of
	ordinary differential equations.
	Unit III: Mathematical Modelling through
	Difference Equations: Marks 15 L: 12, T: 3
	Need of Mathematical Modelling through
	Difference Equations, Mathematical Modelling
	through Difference Equations in Economics,
	Finance, Population dynamics and genetics.
	Unit IV: Mathematical Modelling through Graphs:
	Marks 15 L: 12, T: 3
	Environment that can be modelled through
	Graphs, Mathematical Modelling in terms of
	Directed Graphs, Signed Graphs, weighted
	Diagraphs, Non-oriented Graphs.
Recommended Text	1. Kapur, J. N. (1988). Mathematical Modelling.
	New Age International.
	2. Barnes, B., Fulford, G. R. (2008). Mathematical
	Modelling with Case Studies, CRC Press.
Reference Books	1. Bender, E. A. (2012). An introduction to
	mathematical modeling. Courier Corporation. 2.
	Meerschaert, M. M. (2013). Mathematical
	Modelling, Academic Press
Website and Elearning Source	http://mathforum.org,
-	http://ocw.mit.edu/ocwweb/Mathematics

Department of Mathematics : Debraj Roy College Title of the Course : Measure Theory Paper Number : 4C3 Category CORE Year 2 Credits 4 Course Code: MTHC12 Semester IV Instructional Hours (Per week)

Objectives of the Course	The learners will be exposed to the Lebesgue
	Theory of Integration as an extension of the
	standard Riemann Theory.
Learning outcome	After going through this course, the students will
	be able to
	(i) Describe the properties of Measurable
	sets and functions.

	(ii) Integrate functions using Lebesgue Integration tools.
Course Outline	Unit I : Measurable Sets: Marks 12 L: 9, T: 3
	Outer measure, Lebesgue measure, measurable sets and their properties, Borel sets, Characterization of measurable sets, non- measurable sets. Unit II :Measurable Functions: Marks 12 L: 9, T: 3
	Properties, Step functions, Characteristic functions, Simple functions, Continuous functions, Set of measure zero, Borel measurable function, Realization of non-negative measurable functions in terms of simple functions, Convergence in measure. Unit III : Lebesgue Integrals: Marks 12 L: 9, T: 3
	Riemann integrals, Lebesgue integration of a simple function, Bounded convergence theorem, Fatou's lemma, Monotonic Convergence Theorem, integrable functions, General Lebesgue Integral, Dominated convergence theorem. Unit IV: L ^p - Space: Marks 12 L: 9, T: 3 The L ^p space, Holder, Minkowski's inequalities, summable sequence, essential supremum, Completeness of L ^p Lp space, Bounded linear functional on L ^p spaces.
	Unit V: Probability Measure: Marks 12 L: 9, T: 3 Measurable space, measure space, finite and sigma-finite measures, Axiomatic definition of Probability, definition of Random Variable, Measure induced by a measurable function, definition of Probability distribution and distribution function, properties of distribution function and classification of distributions, Expectation as Lebesgue Integrals.
Recommended Text	 Berra, G. D. (2014). Measure Theory and Integration. Wiley Eastern LTD. Royden, H. L. (2002). Real Analysis. Mc-Millan Feller, W. (1966). An Introduction to Probability Theory and its Applications.
Reference Books	 Rudin, W. (1998). Principles of Mathematical Analysis. McGraw Hill. Jain, P K., Gupta, V. P., Jain, P. (2010). Lebesgue Measure and Integration. New Age International Publisher.

Department of Mathematics : Debraj Roy College Title of the Course : Tensor and Classical Mechanics Paper Number : 1D1 Category : DSE Year 1 Credits 4 Course Code: MTHD1 Semester I Instructional Hours (Per week)

Objectives of the Course	 On completion of the course, the students will be able to build a strong foundation for Tensor Analysis for its application in Continuum Mechanics, Fluid Dynamics, MHD, Classical Mechanics etc. learn the mathematical formulations of various mechanical problems•
Course outline	UNIT –1 : Cartesian, Rectilinear and Curvilinear
	coordinate Systems: Marks-10
	Scalars, vectors and Tensors, Index Notations, Kronecker delta, Permutation symbols, Cartesian coordinate system, Rectlinear coordinate systems, Fundamental and reciprocal basis, derivation of formula for determining reciprocal basis, curvilinear coordinate systems, basis and reciprocal basis in curvilinear coordinate systems, Examples and Exercise. UNIT–2 : General Tensors and the metric tensor: Marks-10
	General tensor, the metric tensor, the permutation tensor, Tensor algebra, the quotient rule, physical components of a tensor, scalar product, vector product and scalar triple product in various forms. Examples and Exercise.
	UNIT: 3 Christoffel symbols and Covariant differentiation: Marks 10

	Partial derivative of a vector, Christoffel symbols, Christoffel symbols in terms of derivative of the metric tensors, Christoffel symbols in orthogonal coordinate systems, covariant derivative of covariant and contravariant components of vectors and second order tensors, covariant derivative of scalars, laws of covariant differentiation, Ricci's theorem, Gradient of a scalar, divergence and curl of vector, Laplacian of a scalar, Examples and Exercise.
	Unit 4: Lagrangian approach in Mechanics: Marks 10 Constrained motion and classifications of constrains of motion, degrees of freedom, generalized coordinates, generalized velocities, total Kinetic energy of a system of particles in terms of generalized velocity, generalized momenta and generalized force. Lagrange's equation of motion using D'Alemberts principle.
	Unit 5: Hamilton's PrincipleMarks 10Euler's Lagrange differential equation andBrachistochrone problem, problem of shortestdistance between two points on plane.Introduction of Hamilton's Principle of least action,Derivation of Lagrange's form of equation ofmotion using Hamilton's principle of least action,conservation principles and symmetry properties.Unit-6: Hamiltonian Formulation
	Hamilton's canonical equation of motion, canonical variables, cyclic co-ordinates, Canonical transformations and generating functions. Introduction of Lagrangian bracket and Poissons's bracket and their properties and applications, Introduction to Hamilton-Jacobi theory and applications.
Recommended Text	 Young, E. C. (2017). Vector and tensor analysis. CRC Press. Aris, R. (2012). Vectors, tensors and the basic equations of fluid mechanics. Courier Corporation. H. Goldstein, Classical Mechanics, Addision Wesley Publishing Company, INC. USA. Lagrangian and Hamiltonian Mechanics by M.G. Calkin, World Scientific, Singapore. 1996
Reference Books	1. Sharma, B. R. (2017). Tensor Analysis: A Primer.

	Mahaveer publications
	2.Calkin, M. G., Lagrangian and Hamiltonian
	Mechanics, World Scientific, Singapore. 1996
	3.Lebedev and Cloud, Tensor Analysis, World
	Scientific Publishing Co Pte Ltd
	4.Gupta, kumar and Sharma, Classical Mechanics,
	Pragati Prakashan
Website and Elearning Source	http://mathforum.org,
	http://ocw.mit.edu/ocwweb/Mathematics,
	http://www.opensource.org,

Department of Mathematics : Debraj Roy College Title of the Course : Combinatorics and Probability Paper Number : 1D2 Category : DSE Year 1 Credits 4 Course Code: MTHD2 Semester I Instructional Hours (Per week)

Objectives of the Course	This course will introduce the theory of
-	enumeration and probability.
Learning Outcome	After going through this course, learners will be
	able to
	(i) Use techniques of enumeration in real
	life problems
	(ii) Model the real life situations using
	probability theory.
Course Outline	UNIT I: Combinatorics: Marks: 25, L: 20, T: 5
	Counting principles, multinomial theorem, set
	partitions and Stirling numbers of the second kind,
	permutations and Stirling numbers of the first
	kind, infinite matrices, inversion of sequences,
	probability generating functions, generating
	functions, evaluating sums, the exponential
	formula
	UNIT II: Probability: Marks: 20, L: 15, T: 5
	Axiomatic definition of probability, probability
	spaces, probability measures on countable and
	uncountable spaces, conditional probability,
	independence; Random variables, distribution

	functions, probability mass and density functions,
	functions of random variables, standard univariate
	discrete and continuous distributions and their
	properties;
	Unit III: Moments and Joint Distribution Marks
	15, L: 10, T: 5
	Mathematical expectations, moments, moment
	generating functions, characteristic functions,
	inequalities; Random vectors, joint, marginal and
	conditional distributions, conditional expectations,
	independence, covariance, correlation, standard
	multivariate distributions
Recommended Text	1. Stanley, R.P. (2011). Enumerative
	Combinatorics. Cambridge Univ Press.
	2. Ross, S. M. (2002). A first course in probability.
	Pearson Education India.
	3. Rohatgi, V. K., Saleh, A. K. Md. E. (2001). An
	Introduction to Probability and Statistics. Wiley.
Reference Books	1. Berge, C. (1971). Principles of combinatorics.
	New York, 176.
	2. Aigner, M. (2007). A course in Enumeration .
	Springer Science & Business Media.
	3. Ross, S. M. (2007). Introduction to Probability
	Models. Elsevier.
Website and E-learning Source	http://mathforum.org ,
	http://ocw.mit.edu/ocwweb/Mathematics,
	http://www.opensource.org

Department of Mathematics : Debraj Roy College Title of the Course : Magnetohydrodynamics Paper Number : 2D1 Category : DSE Year 1 Credits 4 Course Code: MTHD3 Semester II Instructional Hours (Per week)

Objectives of the Course	Starting with electric and Magnetic properties of
	conducting fluid, learners will get idea how
	magnetic field may play dominant role in
	governing flow of conducting liquid. Discussion of
	fundamental aspects of conducting flow in
	presence of Magnetic field. The 1 D cases of steady

	and unsteady flow in linear regime are considered in this course.
Learning Outcome	After going through this course students will be able to (i) Describe electro-magnetic equations (ii) Solve linear flow problems in MHD
Course outline	Unit I:Fundamental of Electrodynamics and MHD approximations: Marks: 16, L: 12, T:4
	The electrical properties of Fluid, electric and magnetic field, Lorentz force, action at a distance, the low frequency approximations, relative and absolute quantities, energetic aspects of MHD, equation of continuity of charge, equation of motion of conducting fluid, Pointing theorem.
	 Unit II: The Kinematics in MHD : Marks: 16, L: 12, T:4 The Maxwell electromagnetic equations, the magnetic induction equation, the analogy with vorticity, diffusion and convection of magnetic field , Magnetic Reynold number, the dynamo problem, Alfven's theorem, the Ferraro's law of isorotations, the two dimensional kinematic problem with flow in the direction of no variation, the two dimensional kinematic problem with field in the direction of no variation, the two dimensional kinematic problem with current in the direction of no variation. Unit III: The magnetic force and its effects: Marks: 12, L: 9, T: 4
	The magnetic force and the inertia force , magnetic stress , principal directions and stress, Magnetohydrostatic, The linear pinch confinement scheme, the force free fields, the magnetic field in moving fluid invalidation of Kelvin's theorem on vorticity, the case of irrotational force per unit mass. Unit IV: Boundary Conditions on Magnetic field
	and 1-D linear flow problems in MHD: Marks 16, L: 12, T: 4 Boundary conditions for magnetic field, the steady Hartmaan Flow problems, Poiseuille type flow, Couette type of Flow, linear Alfven waves, MHD Rayleigh problem.
Recommended Text	 Shercliff, J. A. (1965). Textbook of Magnetohydrodynamics. Pergamon Press, New York. Davidson, P. A. (2002). An introduction to

	Magnetohydrodynamics.
Reference Books	1. David, J. G. (2015). Introduction to
	Electrodynamics. Introduction to
	Magnetohydrodynamics. Pearson.
	2. Chorlton, F. (1967). Textbook of fluid dynamics,
	Van Nostrand.
	3. Hughes, W., Young, F. J. (1966). Electro-magneti-
	hydrodynamics, John Willey and Sons.
	4. Cowling, T. J. (1976). Magnetohydrodynamics.
	Crane Russak & Co.
Website and E-learning Source	http://mathforum.org ,
	http://ocw.mit.edu/ocwweb/Mathematics,
	http://www.opensource.org

Department of Mathematics : Debraj Roy College Title of the Course : Fuzzy Set Theory Paper Number : 2D2 Category : DSE Year 1 Credits 4 Course Code: MTHD4 Semester II Instructional Hours (Per week)

Objectives of the Course	The objective of the course is to introduce classifications and modelling of Uncertainty
Learning Outcomes	After going through this course the students will be able to (i) Explain uncertainty using fuzzy set theory (ii) Gauge Uncertainty of fuzzy set (iii) Apply fuzzy set theory in different types real world problems under uncertainty
Course Outline	Unit I: Basic of Fuzzy Sets: Marks: 12, L: 9, T: 3 Uncertainty, Taxonomy of Uncertainty, Motivation, Concepts of crispness and fuzziness, Fuzzy set and its representation, cut, convex fuzzy set, basic operations on fuzzy sets, types of fuzzy sets, extension principle, t-norm, t-conorms and their properties. Unit II: Fuzzy Arithmetic and Method of

	Construction of Membership Function: Marks: 12, L: 9, T: 3
	Fuzzy Numbers Types of Fuzzy numbers, Interval Arithmetic, Arithmetic operations on fuzzy numbers, membership function formulation.
	Unit III: Fuzzy Relations: Marks: 12, L: 9, T: 3
	Fuzzy relation, binary fuzzy relations, union and intersection of fuzzy relations, projection and cylindrical extensions, fuzzy equivalence relation, Fuzzy compatibility relations, Fuzzy ordering relations, compositions of fuzzy relations and their properties.
	Unit IV: Fuzzy logic and Fuzzy System: Marks: 12, L: 9, T: 3
	Defuzzification, classic and fuzzy logic, approximate reasoning, linguistic hedges, fuzzy inference, fuzzy rule based system. Unit-V: Uncertainty measure and Applications of
	Fuzzy sets: Marks: 12, L: 9, T: 3 Uncertainty based information, non-specificity of fuzzy set, fuzziness of fuzzy sets, Applications of fuzzy sets in decision making and other real world problems.
Recommended Text	1. Klir, G. J., Yuan, B. (1995). Fuzzy sets and Fuzzy logic: theory and applications. New Jersey: Prentice Hall PTR.
	2. Zimmermann, H. J. (2011). Fuzzy set theory and its applications. Springer Science & Business Media.
Reference Books	 Ross, T. J. (2005). Fuzzy logic with engineering applications. John Wiley & Sons. Pedrycz, W., Gomide, F. (1998). An introduction to fuzzy sets: analysis and design. MIT Press.
Website and Elearning Source	http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics, http://www.opensource.org, www.algebra.com

Department of Mathematics : Debraj Roy College Title of the Course : Nonlinear Dynamical Systems and Chaos Paper Number : 2D3 Category : DSE Year 1 Credits 4

Objectives of the Course Learning Outcome	 The objective of this course is to introduce (i) Flow on a line and bifurcation in one dimensional flows (ii) Classification of linear and nonlinear system, limit cycles (iii) One dimensional maps, fractals and chaos After going through this course, students will be able to (i) Find the fixed points and their stability in nonlinear dynamical systems (ii) Apply the methods discussed in this topic to draw interpretations of a dynamical system modeled in terms of ordinary differential equations / difference equations without solving the problems
Course Outline	exactly.Unit I: One Dimensional Flows and Bifurcations: Marks: 12, L:9, T:3 Contact hrs: 12 (Theory: 9, Tutorial: 3), Marks: 12Introduction, Fixed points and Stability, Population Growth, Linear Stability Analysis,
	attractors and strange attractors, One dimensional maps: Introduction, Fixed points and Cobwebs,

	Numeric and analysis of Logistic map,
	Renormalization, Fractals: Countable and
	uncountable sets, Cantor set and its fractal
	property, Dimensions of self similar fractals, Box
	Dimension, The von Koch curve, Strange
	attractors, The Baker's map B.
Recommended Text	1. Strogatz, S. H. (2018). Nonlinear Dynamics and
	Chaos with Student Solutions Manual: With
	Applications to Physics, Biology, Chemistry, and
	Engineering. CRC Press.
	2. Kaplan, D., Glass, L. (2012). Understanding
	nonlinear dynamics. Springer Science & Business
	Media.
Reference Books	1. Thompson, J. M. T., Thompson, M., Stewart, H.
	B. (2002). Nonlinear dynamics and chaos. John
	Wiley & Sons.
	2. Devaney, R., (2003) An Introduction to Chaotic
	dynamical systems., West-view Press.
Website and E-learning Source	http://mathforum.org,
	http://ocw.mit.edu/ocwweb/Mathematics,
	http://www.opensource.org, www.algebra.com

Department of Mathematics : Debraj Roy College Title of the Course : Operations Research Paper Number : 2D4 Category : DSE Year 1 Credits 4 Course Code: MTHD6 Semester II Instructional Hours (Per week)

Objectives of the Course	To build up a strong analytical foundation of the
	Operations Research methods and Theory
Learning Outcome	After going through this course the students will
	be able to
	1. Model and solve non-linear programming
	problems.
	2. Solve the minimum and maximum tree
	problems.
	3. Apply the OR tools in real time Industry oriented
	problems.
Course Outline	Unit I: OR Fundamentals: Marks: 12, T: 9, L:3

Introduction to Operations Research. Linear Programming Problem Formulation of LPP, Graphical solution of LPP. Simplex Method, Artificial variables, big-M method, two-phase method, degeneracy and unbound solutions, sensitivity analysis-graphical approach. Unit II: Non-linear Programming: Marks: 12, T: 9, L3 Non-linear Programming: Single variable optimization, sequential search techniques, Fibonacci search, convex functions, multi-variable optimizations without constraints: Lagrange multipliers, Newton-Raphson method, multi-variable optimizations with constraints: Lagrange multipliers, Newton-Raphson method, multi-variable optimizations with constraints: Lagrange multipliers, Newton-Raphson method, multi-variable optimizations with constraints: Lagrange multipliers, Newton-Raphson method, penalty function,Khun-Tucker conditions. Unit III: Network Analysis: Marks: 12, T: 9, L:3 Networks, Minimum-span problems, Shortest route problems, Maximal flow problems, Fired order period models, single period models, for PERT. Unit IV: Deterministic Inventory Modelling: Marks: 12, T: 9, L:3 Inventory models, fixed order quantity models, fixed order period mode		Introduction to Operations Research: Basics
Imitations of Operations Research. Linear Programming Problem Formulation of LPP, Graphical solution of LPP. Simplex Method, Artificial variables, big-M method, two-phase method, degeneracy and unbound solutions, sensitivity analysis, graphical approach. Unit I: Non-linear Programming: Marks: 12, T: 9, L:3 Non-linear Programming: single variable optimization, sequential search techniques, Fibonacci search, convex functions, multi-variable optimizations without constraints: the method of steepest ascent, Newton-Raphson method, Multi- variable optimizations without constraints: Lagrange multipliers, Newton-Raphson method, Penalty function,Khun-Tucker conditions. Unit III: Network Analysis: Marks: 12, T: 9, L:3Networks, Minimum-span problems, Shortest route problems, Maximal flow problems, PERT/CPM. Critical path computations for PERT, Construction of Time schedules. LPP formulations for PERT.Unit IV: Deterministic Inventory Modelling: Marks: 12, T: 9, L:3 Inventory models, fixed order quantity models, fixed order period models, single period models, storage limitations.Unit IV: Game Theory: Competitive games, rectangular games, saddle point, minimax (maximin) methods of optimal strategies, value of the game. Solution of games with saddle point, minimax (maximin) methods of optimal strategies, value of the game. Solution of games with saddle point, dominance principle. Rectangular games with saddle point, minimax (maximin) methods of optimal strategies, value of the game. Solution of games with saddle point, minimax (maximin) methods of optimal strategies, value of the game. Solution of games with saddle point, minimax (maximin) methods of pares strategy for 2 X 2 games.Recommended Text1. Taha, H. A. (2007). Operations Research: an introduction. Pearoson, R., Naadimuthu, G. (19		
Programming Problem Formulation of LPP, Graphical solution of LPP. Simplex Method, Artificial variables, big-M method, two-phase method, degeneracy and unbound solutions, sensitivity analysis-graphical approach. Unit II: Non-linear Programming: Marks: 12, T: 9, L:3 Non-linear Programming: Single variable optimization, sequential search techniques, Fibonacci search, convex functions, multi-variable optimization, sequential search techniques, Fibonacci search, convex functions, multi-variable optimizations without constraints: Lagrange multipliers, Newton-Raphson method, Penalty function, Khun-Tucker conditions. Unit III: Network Analysis: Marks: 12, T: 9, L:3 Networks, Minimum-span problems, Shortest route problems, Maximal flow problems, PERT/CPM. Critical path computations for PERT, Construction of Time schedules. LPP formulations for PERT. Unit IV: Deterministic Inventory Modelling: Marks: 12, T: 9, L:3 Inventory. Competitive games, rectangular games, saddle point, diminace principle. Rectangular games without saddle point mixed strategy for 2 X 2 games. Recommended Text		
Artificial variables, big-M method, two-phase method, degeneracy and unbound solutions, sensitivity analysis-graphical approach.Unit II: Non-linear Programming: Marks: 12, T: 9, L3 Non-linear Programming: single variable optimization, sequential search techniques, Fibonacci search, convex functions, multi-variable optimizations without constraints: the method of steepest ascent, Newton-Raphson method, Penalty function, Khun-Tucker conditions. Unit III: Network Analysis: Marks: 12, T: 9, L3Networks, Minimum-span problems, Shortest route problems, Maximal flow problems, PERT/CPM. Critical path computations for PERT, Construction of Time schedules. LPP formulations for PERT.Unit IV: Deterministic Inventory Modelling: Marks: 12, T: 9, L3 Inventory models, fixed order quantity models, fixed order period models, single period models, storage limitations.Unit V: Game Theory: Marks: 12, T: 9, L3 Game Theory: Marks: 12, T: 9, L3 Rectangular games, saddle point, minimax (maximin) methods of optimal strategies, value of the game. Solution of games with saddle point, dominance principile. Rectangular games without saddle point mixed strategy for 2 X 2 games.Recommended Text1. Taha, H. A. (2007). Operations Research: an introduction. Pearson Education, 2007. 2. Bronson, R., Naadimuthu, G. (1997). Operations Research Schuar's outlineReference Books1. Sharma, J. K. (2002). Operations Research. Theory & Applications. Macmillan India Ltd. 2. Raju, N.V.S. (2002). Operations Research. HI- TECH.		
method, degeneracy and unbound solutions, sensitivity analysis-graphical approach.Unit II: Non-linear Programming: Marks: 12, T: 9, L:3Non-linear Programming: single variable optimization, sequential search techniques, Fibonacci search, convex functions, multi-variable optimizations without constraints: the method of steepest ascent, Newton-Raphson method, multi- variable optimizations with constraints: Lagrange multipilers, Newton-Raphson method, multi- variable optimizations with constraints: Lagrange multipilers, Newton-Raphson method, Penalty function,Khun-Tucker conditions. Unit III: Network Analysis: Marks: 12, T: 9, L:3Networks, Minimum-span problems, Shortest route problems, Maximal flow problems, PERT/CPM. Critical path computations for PERT, Construction of Time schedules. LPP formulations for PERT.Unit IV: Deterministic Inventory Modelling: Marks: 12, T: 9, L:3Inventory models, fixed order quantity models, fixed order period models, single period models, storage limitations.Unit V: Deterministic Inventory Modelling: Marks: 12, T: 9, L:3Game Theory. Competitive games, rectangular games, saddle point, minimax (maximin) methods of optimal strategies, value of the game. Solution of games with saddle point, dominance principle. Rectangular games without saddle point mixed strategy for 2 X 2 games.Recommended Text1. Taha, H. A. (2007). Operations Research: an introduction. Pearson Education, 2007. 2. Bronson, R., Naadimuthu, G. (1997). Operations Research Schuam's outlineReference Books1. Sharma, J. K. (2002). Operations Research Theory & Applications. Macmillan India Ltd. 2. Raju, N.V.S. (2002). Operations Research. HI- TECH.		Graphical solution of LPP. Simplex Method,
sensitivity analysis-graphical approach.Unit II: Non-linear Programming: Marks: 12, T: 9, L:3Non-linear Programming: single variable optimization, sequential search techniques, Fibonacci search, convex functions, multi-variable optimizations withou constraints: the method of steepest ascent, Newton-Raphson method, multi- variable optimizations with constraints: Lagrange multipliers, Newton-Raphson method, Penalty function,Khun-Tucker conditions. Unit III: Network Analysis: Marks: 12, T: 9, L:3Networks, Minimum-span problems, Shortest route problems, Maximal flow problems, PERT/CPM. Critical path computations for PERT, Construction of Time schedules. LPP formulations for PERT.Unit V: Deterministic Inventory Modelling: Marks: 12, T: 9, L:3Inventory models, fixed order quantity models, fixed order period models, single period models, storage limitations.Unit V: Game Theory: Marks: 12, T: 9, L:3Recommended Text1. Taha, H. A. (2007). Operations Research: an introduction. Parson Education, 2007. 2. Bronson, R., Naadimutu, G. (1997). Operations Research Schuam's outlineReference Books1. Sharma, J. K. (2002). Operations Research Theory & Applications. Macmillan India Ltd. 2. Raju, N.V.S. (2002). Operations Research. HI- TECH.		
Unit II: Non-linear Programming: Marks: 12, T: 9, L:3 Non-linear Programming: single variable optimization, sequential search techniques, Fibonacci search, convex functions, multi-variable optimizations without constraints: the method of steepest ascent, Newton-Raphson method, multi- variable optimizations with constraints: Lagrange multipliers, Newton-Raphson method, Penalty function, Khun-Tucker conditions. Unit III: Network Analysis: Marks: 12, T: 9, L:3Networks, Minimum-span problems, Shortest route problems, Maximal flow problems, PERT/CPM. Critical path computations for PERT, Construction of Time schedules. LPP formulations for PERT.Unit IV: Deterministic Inventory Modelling: Marks: 12, T: 9, L:3 Inventory models, fixed order quantity models, fixed order period models, single period models, storage limitations.Unit V: Game Theory: Competitive games, rectangular games, saddle point, minimax (maximi) methods of optimal strategies, value of the game. Solution of games with saddle point, addle point mixed strategy for 2 X 2 games.Recommended Text1. Taha, H. A. (2007). Operations Research: an introduction. Pearson Education, 2007. 2. Bronson, R., Naadimutu, G. (1997). Operations Research Schuam's outlineReference Books1. Sharma, J. K. (2002). Operations Research Theory & Applications. Macmillan India Ltd. 2. Raju, N.V.S. (2002). Operations Research. HI- TECH.		
L:3Non-linear Programming: single variable optimization, sequential search techniques, Fibonacci search, convex functions, multi-variable optimizations without constraints: the method of steepest ascent, Newton-Raphson method, multi- variable optimizations with constraints: Lagrange multipliers, Newton- Raphson method, Penalty function,Khun-Tucker conditions. Unit III: Network Analysis: Marks: 12, T: 9, L:3Networks, Minimum-span problems, Shortest route problems, Maximal flow problems, PERT/CPM. Critical path computations for PERT, Construction of Time schedules. LPP formulations for PERT.Unit IV: Deterministic Inventory Modelling: Marks: 12, T: 9, L:3Inventory models, fixed order quantity models, fixed order period models, single period models, storage limitations.Unit V: Game Theory: Marks: 12, T: 9, L:3Inventory competitive games, rectangular games, saddle point, minimax (maximin) methods of optimal strategies, value of the game. Solution of games with saddle point mixed strategy for 2 X 2 games.Recommended Text1. Taha, H. A. (2007). Operations Research: an introduction. Pearson Education, 2007. 2. Bronson, R., Naadimuthu, G. (1997). Operations Research Schuam's outlineReference Books1. Sharma, J. K. (2002). Operations Research Theory & Applications. Macmillan India Ltd. 2. Raju, N. V.S. (2002). Operations Research. HI- TECH.		
optimization, sequential search techniques, Fibonacci search, convex functions, multi-variable optimizations withou constraints: the method of steepest ascent, Newton-Raphson method, multi- variable optimizations with constraints: Lagrange multipliers, Newton-Raphson method, Penalty function, Khun-Tucker conditions. Unit III: Network Analysis: Marks: 12, T: 9, L:3Networks, Minimum-span problems, Shortest route problems, Maximal flow problems, PERT/CPM. Critical path computations for PERT, Construction of Time schedules. LPP formulations for PERT.Unit IV: Deterministic Inventory Modelling: Marks: 12, T: 9, L:3Inventory models, fixed order quantity models, fixed order period models, single period models, storage limitations.Unit V: Game Theory: Marks: 12, T: 9, L:3Game Theory: Marks: 12, T: 9, L:3Game Theory: Marks: 12, T: 9, L:3Recommended Text1. Taha, H. A. (2007). Operations Research: introduction. Pearson Education, 2007. 2. Bronson, R., Maadimuthu, G. (1997). Operations Research Schuam's outlineReference Books1. Sharma, J. K. (2007). Operations Research Theory & Applications. Maximal India Ltd. 2. Raju, N. V.S. (2002). Operations Research. HI- TECH.		L:3
Fibonacci search, convex functions, multi-variable optimizations without constraints: the method of steepest ascent, Newton-Raphson method, multi- variable optimizations with constraints: Lagrange multipliers, Newton-Raphson method, Penalty function, Khun-Tucker conditions.Unit III: Network Analysis: Marks: 12, T: 9, L:3Networks, Minimum-span problems, Shortest route problems, Maximal flow problems, PERT/CPM. Critical path computations for PERT, Construction of Time schedules. LPP formulations for PERT.Unit IV: Deterministic Inventory Modelling: Marks: 12, T: 9, L:3 Inventory models, fixed order quantity models, fixed order period models, single period models, storage limitations.Unit IV: Game Theory: Marks: 12, T: 9, L:3 Game Theory. Competitive games, rectangular games, saddle point, minimax (maximin) methods of optimal strategies, value of the game. Solution of games with saddle point mixed strategy for 2 X 2 games.Recommended Text1. Taha, H. A. (2007). Operations Research: an introduction. Pearson Education, 2007. 2. Bronson, R., Naadimuthu, G. (1997). Operations Research Schuam's outlineReference Books1. Sharma, J. K. (2002). Operations Research Theory & Applications. Macmillan India Ltd. 2. Applications. Macmillan India Ltd. 2. Rapit. N.V.S. (2002). Operations Research. HI- TECH.		
optimizations without constraints: the method of steepest ascent, Newton-Raphson method, multi- variable optimizations with constraints: Lagrange multipliers, Newton-Raphson method, Penalty function,Khun-Tucker conditions. Unit III: Network Analysis: Marks: 12, T: 9, L:3Networks, Minimum-span problems, Shortest route problems, Maximal flow problems, PERT/CPM. Critical path computations for PERT, Construction of Time schedules. LPP formulations for PERT.Unit IV: Deterministic Inventory Modelling: Marks: 12, T: 9, L:3Inventory models, fixed order quantity models, fixed order period models, single period models, storage limitations.Unit V: Game Theory: Marks: 12, T: 9, L:3 Game Theory. Competitive games, rectangular games, saddle point, minimax (maximin) methods of optimal strategies, value of the game. Solution of games with saddle points, dominance principle. Rectangular games without saddle point mixed strategy for 2 X 2 games.Recommended Text1. Taha, H. A. (2007). Operations Research: an introduction. Pearson Education, 2007. 2. Bronson, R, Naadimuthu, G. (1997). Operations Research Schuan's outlineReference Books1. Sharma, J. K. (2007). Operations Research Theory & Applications. Macmillan India Ltd. 2. Raju, N.V.S. (2002). Operations Research. HI- TECH.		
steepest ascent, Newton-Raphson method, multi- variable optimizations with constraints: Lagrange multipliers, Newton- Raphson method, Penalty function,Khun-Tucker conditions. Unit III: Network Analysis: Marks: 12, T: 9, L:3Networks, Minimum-span problems, Shortest route problems, Maximal flow problems, PERT/CPM. Critical path computations for PERT, Construction of Time schedules. LPP formulations for PERT.Unit IV: Deterministic Inventory Modelling: Marks: 12, T: 9, L:3Inventory models, fixed order quantity models, fixed order period models, single period models, storage limitations.Unit V: Game Theory: Marks: 12, T: 9, L:3Game Theory: Competitive games, rectangular games, saddle point, dominance principle. Rectangular games without saddle point mixed strategy for 2 X 2 games.Recommended Text1. Taha, H. A. (2007). Operations Research: an introduction. Pearson Education, 2007. 2. Bronson, R., Naadimuthu, G. (1997). Operations Research Schuam's outlineReference Books1. Sharma, J. K. (2007). Operations Research Theory & Applications. Macmillan India Ltd. 2. Raju, N.V.S. (2002). Operations Research. HI- TECH.		
variable optimizations with constraints: Lagrange multipliers, Newton- Raphson method, Penalty function, Khun-Tucker conditions. Unit III: Network Analysis: Marks: 12, T: 9, L:3Networks, Minimum-span problems, Shortest route problems, Maximal flow problems, PERT/CPM. Critical path computations for PERT, Construction of Time schedules. LPP formulations for PERT.Unit IV: Deterministic Inventory Modelling: Marks: 12, T: 9, L:3Inventory models, fixed order quantity models, fixed order period models, single period models, storage limitations.Unit V: Game Theory: Marks: 12, T: 9, L:3Game Theory: Competitive games, rectangular games, saddle point, minimax (maximin) methods of optimal strategies, value of the game. Solution of games with saddle point, dominance principle. Rectangular games.Recommended Text1. Taha, H. A. (2007). Operations Research: an introduction. Pearson Education, 2007. 2. Bronson, R., Naadimuthu, G. (1997). Operations Research Schuam's outlineReference Books1. Sharma, J. K. (2007). Operations Research Theory & Applications. Macmillan India Ltd. 2. Raju, N.V.S. (2002). Operations Research. HI- TECH.		
multipliers, Newton- Raphson method, Penalty function,Khun-Tucker conditions. Unit III: Network Analysis: Marks: 12, T: 9, L:3Networks, Minimum-span problems, Shortest route problems, Maximal flow problems, PERT/CPM. Critical path computations for PERT, Construction of Time schedules. LPP formulations for PERT.Unit IV: Deterministic Inventory Modelling: Marks: 12, T: 9, L:3Inventory models, fixed order quantity models, fixed order period models, single period models, storage limitations.Unit V: Game Theory: Marks: 12, T: 9, L:3Game Theory: Operations, rectangular games, saddle point, minimax (maximin) methods of optimal strategies, value of the game. Solution of games with saddle point, dominance principle. Rectangular games without saddle point mixed strategy for 2 X 2 games.Recommended Text1. Taha, H. A. (2007). Operations Research: an introduction. Pearson Education, 2007. 2. Bronson, R., Naadimuthu, G. (1997). Operations Research Schuam's outlineReference Books1. Sharma, J. K. (2007). Operations Research Theory & Applications. Macmillan India Ltd. 2. Raju, N.V.S. (2002). Operations Research. HI- TECH.		•
function,Khun-Tucker conditions.Unit III: Network Analysis: Marks: 12, T: 9, L:3Networks, Minimum-span problems, Shortest route problems, Maximal flow problems, PERT/CPM. Critical path computations for PERT, Construction of Time schedules. LPP formulations for PERT.Unit IV: Deterministic Inventory Modelling: Marks: 12, T: 9, L:3 Inventory models, fixed order quantity models, fixed order period models, single period models, storage limitations. Unit V: Game Theory: Marks: 12, T: 9, L:3 Game Theory. Competitive games, rectangular games, saddle point, minimax (maximin) methods of optimal strategies, value of the game. Solution of games with saddle points, dominance principle. Rectangular games without saddle point mixed strategy for 2 X 2 games.Recommended Text1. Taha, H. A. (2007). Operations Research: an introduction. Pearson Education, 2007. 2. Bronson, R., Naadimuthu, G. (1997). Operations Research Schuam's outlineReference Books1. Sharma, J. K. (2007). Operations Research Theory & Applications. Macmillan India Ltd. 2. Raju, N.V.S. (2002). Operations Research. HI- TECH.		
Networks, Minimum-span problems, Shortest route problems, Maximal flow problems, PERT/CPM. Critical path computations for PERT, Construction of Time schedules. LPP formulations for PERT.Unit IV: Deterministic Inventory Modelling: Marks: 12, T: 9, L:3 Inventory models, fixed order quantity models, fixed order period models, single period models, storage limitations.Unit V: Game Theory: Marks: 12, T: 9, L:3 Game Theory: Marks: 12, T: 9, L:3 Game Theory: Competitive games, rectangular games, saddle point, minimax (maximin) methods of optimal strategies, value of the game. Solution of games without saddle point, dominance principle. Rectangular games.Recommended Text1. Taha, H. A. (2007). Operations Research: an introduction. Pearson Education, 2007. 2. Bronson, R., Naadimuthu, G. (1997). Operations Research Schuam's outlineReference Books1. Sharma, J. K. (2007). Operations Research Theory & Applications. Macmillan India Ltd. 2. Raju, N.V.S. (2002). Operations Research. HI- TECH.		
route problems, Maximal flow problems, PERT/CPM. Critical path computations for PERT, Construction of Time schedules. LPP formulations for PERT.Unit IV: Deterministic Inventory Modelling: Marks: 12, T: 9, L:3 Inventory models, fixed order quantity models, fixed order period models, single period models, storage limitations.Unit V: Game Theory: Marks: 12, T: 9, L:3 Game Theory: Competitive games, rectangular games, saddle point, minimax (maximin) methods of optimal strategies, value of the game. Solution of games with saddle points, dominance principle. Rectangular games without saddle point mixed strategy for 2 X 2 games.Recommended Text1. Taha, H. A. (2007). Operations Research: an introduction. Pearson Education, 2007. 2. Bronson, R., Naadimuthu, G. (1997). Operations Research Schuam's outlineReference Books1. Sharma, J. K. (2007). Operations Research Theory & Applications. Macmillan India Ltd. 2. Raju, N.V.S. (2002). Operations Research. HI- TECH.		Unit III: Network Analysis: Marks: 12, T: 9, L:3
PERT/CPM. Critical path computations for PERT, Construction of Time schedules. LPP formulations for PERT.Unit IV: Deterministic Inventory Modelling: Marks: 12, T: 9, L:3 Inventory models, fixed order quantity models, fixed order period models, single period models, storage limitations.Unit V: Game Theory: Marks: 12, T: 9, L:3 Game Theory. Competitive games, rectangular games, saddle point, minimax (maximin) methods of optimal strategies, value of the game. Solution of games with saddle points, dominance principle. Rectangular games.Recommended Text1. Taha, H. A. (2007). Operations Research: an introduction. Pearson Education, 2007. 2. Bronson, R., Naadimuthu, G. (1997). Operations Research Schuam's outlineReference Books1. Sharma, J. K. (2007). Operations Research Theory & Applications. Macmillan India Ltd. 2. Raju, N.V.S. (2002). Operations Research. HI- TECH.		
Construction of Time schedules. LPP formulations for PERT.Unit IV: Deterministic Inventory Modelling: Marks: 12, T: 9, L:3 Inventory models, fixed order quantity models, fixed order period models, single period models, storage limitations.Unit V: Game Theory: Marks: 12, T: 9, L:3 Game Theory. Competitive games, rectangular games, saddle point, minimax (maximin) methods of optimal strategies, value of the game. Solution of games with saddle points, dominance principle. Rectangular games.Recommended Text1. Taha, H. A. (2007). Operations Research: an introduction. Pearson Education, 2007. 2. Bronson, R., Naadimuthu, G. (1997). Operations Research Schuam's outlineReference Books1. Sharma, J. K. (2007). Operations Research Theory & Applications. Macmillan India Ltd. 2. Raju, N.V.S. (2002). Operations Research. HI- TECH.		•
for PERT.Unit IV: Deterministic Inventory Modelling: Marks: 12, T: 9, L:3 Inventory models, fixed order quantity models, fixed order period models, single period models, storage limitations. Unit V: Game Theory: Marks: 12, T: 9, L:3 Game Theory. Competitive games, rectangular games, saddle point, minimax (maximin) methods of of optimal strategies, value of the game. Solution of games with saddle point, dominance principle. Rectangular games.Recommended Text1. Tah, H. A. (2007). Operations Research: an introduction. Pearson Education, 2007. 2. Bronson, R., Naadimuthu, G. (1997). Operations Research Schuam's outlineReference Books1. Sharma, J. K. (2007). Operations Research Theory & Applications. Macmillan India Ltd. 2. Raju, N.V.S. (2002). Operations Research. HI- TECH.		· · · ·
Image: Constraint of the second sec		
Marks: 12, T: 9, L:3Inventory models, fixed order quantity models, fixed order period models, single period models, storage limitations.Unit V: Game Theory: Marks: 12, T: 9, L:3Game Theory. Competitive games, rectangular games, saddle point, minimax (maximin) methods of optimal strategies, value of the game. Solution of games with saddle points, dominance principle. Rectangular games.Recommended Text1. Taha, H. A. (2007). Operations Research: an introduction. Pearson Education, 2007. 2. Bronson, R., Naadimuthu, G. (1997). Operations Research Schuam's outlineReference Books1. Sharma, J. K. (2007). Operations Research Theory & Applications. Macmillan India Ltd. 2. Raju, N.V.S. (2002). Operations Research. HI- TECH.		for PERT.
fixed order period models, single period models, storage limitations.Unit V: Game Theory: Marks: 12, T: 9, L:3 Game Theory. Competitive games, rectangular games, saddle point, minimax (maximin) methods of optimal strategies, value of the game. Solution of games with saddle points, dominance principle. Rectangular games without saddle point mixed strategy for 2 X 2 games.Recommended Text1. Taha, H. A. (2007). Operations Research: an introduction. Pearson Education, 2007. 2. Bronson, R., Naadimuthu, G. (1997). Operations Research Schuam's outlineReference Books1. Sharma, J. K. (2007). Operations Research Theory & Applications. Macmillan India Ltd. 2. Raju, N.V.S. (2002). Operations Research. HI- TECH.		
storage limitations.Unit V: Game Theory: Marks: 12, T: 9, L:3Game Theory. Competitive games, rectangulargames, saddle point, minimax (maximin) methodsof optimal strategies, value of the game. Solutionof games with saddle points, dominance principle.Rectangular games without saddle point mixedstrategy for 2 X 2 games.Recommended Text1. Taha, H. A. (2007). Operations Research: anintroduction. Pearson Education, 2007.2. Bronson, R., Naadimuthu, G. (1997). OperationsResearch Schuam's outlineReference Books1. Sharma, J. K. (2007). Operations ResearchTheory & Applications. Macmillan India Ltd.2. Raju, N.V.S. (2002). Operations Research. HI-TECH.		Inventory models, fixed order quantity models,
Unit V: Game Theory: Marks: 12, T: 9, L:3Game Theory. Competitive games, rectangulargames, saddle point, minimax (maximin) methodsof optimal strategies, value of the game. Solutionof games with saddle points, dominance principle.Rectangular games without saddle point mixedstrategy for 2 X 2 games.Recommended Text1. Taha, H. A. (2007). Operations Research: an introduction. Pearson Education, 2007.2. Bronson, R., Naadimuthu, G. (1997). Operations Research Schuam's outlineReference Books1. Sharma, J. K. (2007). Operations Research Theory & Applications. Macmillan India Ltd. 2. Raju, N.V.S. (2002). Operations Research. HI- TECH.		
Game Theory. Competitive games, rectangular games, saddle point, minimax (maximin) methods of optimal strategies, value of the game. Solution of games with saddle points, dominance principle. Rectangular games without saddle point mixed strategy for 2 X 2 games.Recommended Text1. Taha, H. A. (2007). Operations Research: an introduction. Pearson Education, 2007. 2. Bronson, R., Naadimuthu, G. (1997). Operations Research Schuam's outlineReference Books1. Sharma, J. K. (2007). Operations Research Theory & Applications. Macmillan India Ltd. 2. Raju, N.V.S. (2002). Operations Research. HI- TECH.		-
games, saddle point, minimax (maximin) methods of optimal strategies, value of the game. Solution of games with saddle points, dominance principle. Rectangular games without saddle point mixed strategy for 2 X 2 games.Recommended Text1. Taha, H. A. (2007). Operations Research: an introduction. Pearson Education, 2007. 2. Bronson, R., Naadimuthu, G. (1997). Operations Research Schuam's outlineReference Books1. Sharma, J. K. (2007). Operations Research Theory & Applications. Macmillan India Ltd. 2. Raju, N.V.S. (2002). Operations Research. HI- TECH.		-
of optimal strategies, value of the game. Solution of games with saddle points, dominance principle. Rectangular games without saddle point mixed strategy for 2 X 2 games.Recommended Text1. Taha, H. A. (2007). Operations Research: an introduction. Pearson Education, 2007. 2. Bronson, R., Naadimuthu, G. (1997). Operations Research Schuam's outlineReference Books1. Sharma, J. K. (2007). Operations Research Theory & Applications. Macmillan India Ltd. 2. Raju, N.V.S. (2002). Operations Research. HI- TECH.		
of games with saddle points, dominance principle. Rectangular games without saddle point mixed strategy for 2 X 2 games.Recommended Text1. Taha, H. A. (2007). Operations Research: an introduction. Pearson Education, 2007. 2. Bronson, R., Naadimuthu, G. (1997). Operations Research Schuam's outlineReference Books1. Sharma, J. K. (2007). Operations Research Theory & Applications. Macmillan India Ltd. 2. Raju, N.V.S. (2002). Operations Research. HI- TECH.		
Rectangular games without saddle point mixed strategy for 2 X 2 games.Recommended Text1. Taha, H. A. (2007). Operations Research: an introduction. Pearson Education, 2007. 2. Bronson, R., Naadimuthu, G. (1997). Operations Research Schuam's outlineReference Books1. Sharma, J. K. (2007). Operations Research Theory & Applications. Macmillan India Ltd. 2. Raju, N.V.S. (2002). Operations Research. HI- TECH.		
strategy for 2 X 2 games.Recommended Text1. Taha, H. A. (2007). Operations Research: an introduction. Pearson Education, 2007. 2. Bronson, R., Naadimuthu, G. (1997). Operations Research Schuam's outlineReference Books1. Sharma, J. K. (2007). Operations Research Theory & Applications. Macmillan India Ltd. 2. Raju, N.V.S. (2002). Operations Research. HI- TECH.		
introduction. Pearson Education, 2007.2. Bronson, R., Naadimuthu, G. (1997). Operations Research Schuam's outlineReference Books1. Sharma, J. K. (2007). Operations Research Theory & Applications. Macmillan India Ltd. 2. Raju, N.V.S. (2002). Operations Research. HI- TECH.		
2. Bronson, R., Naadimuthu, G. (1997). Operations Research Schuam's outlineReference Books1. Sharma, J. K. (2007). Operations Research Theory & Applications. Macmillan India Ltd. 2. Raju, N.V.S. (2002). Operations Research. HI- TECH.	Recommended Text	
Reference BooksResearch Schuam's outlineReference Books1. Sharma, J. K. (2007). Operations Research Theory & Applications. Macmillan India Ltd. 2. Raju, N.V.S. (2002). Operations Research. HI- TECH.		
Reference Books1. Sharma, J. K. (2007). Operations Research Theory & Applications. Macmillan India Ltd. 2. Raju, N.V.S. (2002). Operations Research. HI- TECH.		
Theory & Applications. Macmillan India Ltd. 2. Raju, N.V.S. (2002). Operations Research. HI- TECH.	Deference Deele	
2. Raju, N.V.S. (2002). Operations Research. HI- TECH.		
TECH.		
Operation Research.Sharma, S. Chand & Sons.		

Title of the Course : Mathematical Biology Paper Number : 2D5 Category : DSE Year 1 Credits 4 Course Code: MTHD7 Semester II Instructional Hours (Per week)

Objectives of the Course	To introduce certain mathematical tools like linear
Objectives of the course	algebra, probability, Difference equations and
	Differential equations in modeling some aspects of
	Biological Systems.
Learner Outcome	After going through this course, students will be
	able to (i) Relate mathematical notions with
	biological phenomena (ii) Solve simple biological
	problems using discussed models.
Course Outline	Unit I : Modeling Population Dynamics : Marks:
	15, L: 12, T:3
	Dynamic modeling with difference equations ; The
	Malthusian Model, Nonlinear Models, Analyzing
	Nonlnear Models, Variations on the Logistic
	Model, Comments on Discrete and Continuous
	Models. Linear Models of Structured Populations;
	Linear models and Matrix Algebra, Projection
	Matrices for Structured Models. Reproduction and
	the drive for survival ; The Darwinian Model of
	Evolution, Cells, replication of Living Systems,
	Population Growth and its Limitations, The
	Exponential Model for Growth and Decay. Age
	Dependent Population Structures; Aging and
	Death, The Age Structure of Populations,
	Predicting the Age Structure of a Population.
	Unit II : Modeling Molecular Evolution: Marks: 15,
	L: 11 T:4
	Background on DNA, An Introduction to
	Probability, Conditional Probabilities, Matrix
	Models for base substitution, Phylogenetic
	Distances, Phylogenetic Trees.
	Unit III Genetics: Marks: 15, L: 11, T:4
	Asexual Cell Reproduction, Sexual Reproduction,
	Classical Genetics, A Final Look at Darwinian
	Evolution, The Hardy-Weinberg Principle, The
	Fixation of a Beneficial Mutation. Mendelian

	and the Deckel (1) with the start of the
	genetics, Probability distribution in Genetics,
	Linkage, Gene Frequency in populations.
	Unit IV Modeling Disease Spread: Marks: 15, L:
	11, T:4
	Infectious Disease Modeling; Elementary Epidemic
	Models, Threshold Values and Critical Parameters,
	Variations on a Theme, Multiple Population and
	Differentiated Infectivity. A Mathematical
	Approach to HIV and AIDS ; Viruses, The Immune
	System, HIV and AIDS, An HIV Infection Model, A
	Model for a Mutating AIDS, Predicting the Onset of
	AIDS,
Recommended Texts	1. Allman, E. A., Rhodes, J. A. (2004). Mathematical
	Models in Biology: An Introduction. Cambridge
	University Press.
	2. Edward K. Y., Ronald W. S., James, V. H., (2011).
	An Introduction to the Mathematics of Biology:
	With Computer Algrbra Models. Springer.
Reference Books	1. Barnes, B., Fulford, G. R. (2008). Mathematical
	Modelling with Case Studies, CRC Press.
	2. Chou. C. S., Friedman, A. (2016). Introduction to
	Mathematical Biology. Springer.
	3. Keshet, L.E. (1988). Mathematical Models in
	Biology, Random House New York.

Department of Mathematics : Debraj Roy College Title of the Course : Advanced Algebra Paper Number : 3D1 Category : DSE Year 2 Credits 4 Course Code: MTHD8 Semester III Instructional Hours (Per week)

Objectives of the Course	To introduce to the students some advanced
	aspects of Abstract Algebra
Learner Outcome	Students will be able to relate algebraic properties
	with geometric properties
Course Outline	Unit -1 Marks : 15, L: 10, T: 3
	Solvable and Nilpotent Groups. Normal and
	Subnormal series
	Unit -2 Marks : 15, L: 11, T: 4

	Commutative Rings and Modules ; Chain
	conditions, Prime and Primary Ideals, Noetherian
	rings and Modules
	Unit-3 Marks : 15, L: 12, T: 4
	Field, Polynomial ring over field, Field Extension,
	Algebraic and Transcendental elements,
	Characterization of Extensions, Finite Extensions,
	Properties of Algebraic Extensions.
	Unit 4 Marks : 15, L: 12, T: 4
	Galois Theory; Automorphism groups and fixed
	fields, Fundamental theorem of Galois Theory,
	Fundamental theorem of Algebra, Polynomial
	solvable by radicals, Ruler and Compass
	Construction.
Recommended Text	1. Gallian, J. A. (2013). Contemporary Abstract
	Algebra, New Age International.
	2. Hungerford, T. W. (1974). Algebra. Springer-
	Verlag. New York.
	3. Bhattacharya, P. B., Jain, S. K., Nagpaul, S. R.
	(1994). Basic Abstract Algebra. Cambridge
	University Press.
Reference Books	1. Herstein, I. N. (1975). Topics in Algebra Wiley.
	Eastern Limited.
	2. Dummit, D. S., Foote, R. M. (2004). Abstract
	Algebra. Hoboken: Wiley.
Website and Elearning Source	www.algebra.org
0	0

Department of Mathematics : Debraj Roy College Title of the Course : Dempster-Shafer Theory of Evidence Paper Number : 3D2 Category : DSE Year 2 Credits 4 Course Code: MTHD9 Semester III Instructional Hours (Per week)

Objectives of the Course	The objective of the course is to introduce
	taxonomy, representation and modeling of
	Uncertainty
Learning Outcome	After going through this course the students will
	be able to
	(i) Design and measure uncertainty using
	Dampster-Shafer theory
	(ii) Solve different types of real world

	problems under uncertainty
Course Outline	Unit I: Dempster Shafer Theory: Marks: 15 L: 12,
	T: 4
	Uncertainty, Types of Uncertainties, Sources and
	Nature of Uncertainty, Concept of Dempster-
	Shafer theory (DST), Basic Probability Assignment
	(BPA) and Its properties, Belief and Plausibility
	measure, Properties of Belief and Plausibility
	measures, Relation between Belief and Plausibility
	measures, Cumulative Belief and Plausibility
	measures, Focal Elements, Dempster-Shafer
	Structure (DSS), Necessity, Possibility measures
	and their Properties .
	Unit II: Combination of Evidence in DST and
	Arithmetic of DSSs: Marks: 15 L: 11, T: 4
	Dempster's Rule of combination of BPA, Yager's
	rule of combination, Inagaki's Rule of
	combination, Zhand's rule of combination,
	Combination of Evidence with Different Weighting
	Factors, Other Modified rule of combinations,
	Arithmetic of DSSs.
	Unit III: Methods of Construction of BPA and
	Uncertainty Based Information: Marks: 15 L: 11,
	T: 4
	Approaches to construct BPA, Uncertainty based
	information, Non-specificity, Entropy like measure,
	Strife, Fuzziness in DST, Probability-Possibility
	transformations.
	Unit IV: Applications of DST: Marks: 15 L: 11, T: 3
	Applications of DST in decision making and other
	real world problems.
Recommended Text	1. Shafer, G. (1976). A Mathematical Theory of
	Evidence, Priceton University Press.
	2. Ayyub, B. M., Klir, G. J. (2006). Uncertainty
	modeling and analysis in engineering and the
	sciences. Chapman and Hall/CRC.
Reference Books	1. Yager R. R., Liu, L. (2008). Classical works of the
	Dempster-Shafer theory of belief functions,
	Springer.
	2. Yager, R., Kacprzyk J., Fedrizzi, M. (1994).
	Advances in the Dempster-Shafer theory of
	evidence. Wiley and Sons.
Website and Elearning Source	http://mathforum.org,
	http://ocw.mit.edu/ocwweb/Mathematics,
	http://www.opensource.org, www.algebra.com

Department of Mathematics : Debraj Roy College Title of the Course : Fluid Dynamics Paper Number : 3D3 Category : DSE Year 2 Credits 4 Course Code: MTHD10 Semester III Instructional Hours (Per week)

Objectives of the Course	The objective of this course is to introduce (iv)
Objectives of the course	
	Fundamental aspects of fluid flow behaviours. (v)
	Dynamics of viscous fluid flows and governing
	equations of motion.
Learning Outcome	After going through this course, students will be
	able to
	(i) Describe stress-strain relationship of
	Newtonian fluids.
	(ii) Derive some exact solutions of Navier-
	Stokes equations under different
	geometries.
Course Outline	Unit I: Kinematics of Fluids in motion & Stress and
	Strain Analysis: Marks: 20, L: 15, T:5
	Methods of describing fluid motion, material, local
	and convective derivatives, path lines, stream
	lines, vortex lines, strain and its types, small
	deformation theory, stress vector and stress
	tensor, various stresses, constitutive equations,
	Reynolds transport formula, conservation laws and
	mathematical forms in various fluid motions
	(steady and unsteady, compressible and
	incompressible,
	Unit II: Two and Three Dimensional Inviscid Fluid
	Flows: Marks: 14, L: 10, T:4
	Complex potential, Sources, sinks, doublets,
	images with respect to plane and circle,
	MilneThomson circle theorem, Blasius theorem,
	motion past a circular cylinder, axi-symmetric
	flows, -
	Unit III: Navier-Stokes Equations and its Exact
	Solutions: Marks: 14, L: 11, T:3
	Navier-Stokes equations, rate of change of
	circulation, diffusion of vorticity, vorticity equation
	and energy dissipation due to viscosity, exact
	solutions of Navier-Stokes equations: Couette
	flow, Poiseuille flow, Hagen-Poiesuille flow

	through a pipe, flow through annular region, Stokes first problem. Unit IV: Boundary Layer Theory: Marks: 12, L: 9, T: 3 Laminar boundary layer, two-dimensional boundary layer equations, Blasius equation, boundary layer parameters, separation of boundary layer, momentum and energy integral equation.
Recommended Text	 Chatterjee, R. (2015). Mathematical Theory of Continuum Mechanics. Narosa Publishing House. Schlichting, H., Gersten, K. (2016). Boundary- layer theory. Springer. Chorlton, F. (2004). Textbook of fluid dynamics. CBS Publisher.
Reference Books	 Spencer, A. J. M. (2004). Continuum Mechanics. Dover Publications. Raisinghania, M. D. (2003). Fluid Dynamics. S. Chand Publications. Lamb, S. R. (1945). Hydrodynamics. Dover Publications. Ramsay, A. S. (1913). Hydrodynamics (A Treatise on Hydromechanics). G. Bell and Sons, Itd. Kundu, P.K. Cohen, I. M., Dowling, D. R. (2011). Fluid Mechanics. Academic Press. Thomson, L. M. M. (2011). Theoretical Hydrodynamics. Dover Publications
Website and E learning Source	https://ocw.mit.edu/courses/aeronautics-and- astronautics/16-01-unified-engineering-i-ii-iii-iv- fall2005-spring-2006/fluid-mechanics/

Title of the Course : Network Science Paper Number : 3D4 Category : DSE Year 2 Credits 4 Course Code: MTHD11 Semester III Instructional Hours (Per week)

Prerequisites for the Course	Basic of Graph Theory is required.
Objectives of the Course	Students will learn the application of graph Theory
	and games on networks
Learning Outcome	After going through this course, learners will be

	able to (i) Use graph and some the anti-
	able to (i) Use graph and game theoretic tools in
	networks (ii) Analyse and differentiate the
	networks critically.
Course Outline	Unit I: Mathematics of Networks: Marks: 15 L: 12,
	T: 4
	Networks and their representation, weighted
	network, directed network, bipartite network,
	hypergraphs.
	Unit II: Measures and Metrics: Marks: 15 L: 11, T:
	3
	Shortest path, degree distribution, Power laws,
	Centrality, Reciprocity, Similarity, Homophily and
	Assortative mixing.
	Unit III: Network Models: Marks: 15 L: 11, T: 4
	Random graphs, Giant component, Small-world,
	Scale-free. Four Broad Classes of networks:
	technological, information, social and biological.
	Unit IV: Games on Networks: Marks: 15 L: 11, T: 4
	General Model, Discussion of two assumptions,
	Strategic network formation, pairwise stability,
	efficient networks
Recommended Text	1. Newman, M. E. J. (2018). Networks: An
	Introduction. Oxford University Press.
	2. Barabasi, A. L. (2016). Network Science,
	Cambridge University
	Press.(www.networksciencebook.com)
	3. Goel, S. (2009). Connections, Princeton
	University Press.
Reference Books	1. Newman, M. (2010). The structure and
	dynamics of networks. New Age International Pvt
	Ltd; First edition.
	2. Jacksin, M. O. (2008). Social and Economic
	Networks, Princeton University Press.
	3. Wasserman, S., Faus, K. (1999). Social Network
	Analysis. Cambridge University Press.
Website and E-learning Source	http://www.networksciencebook.com

Title of the Course : Algebraic Graph Theory Paper Number : 4D1 Category : DSE Year 2 Credits 4 Course Code: MTHD12 Semester IV Instructional Hours (Per week)

Prerequisites for the course	Basics of Graph Theory and Linear Algebra are required.
Course Objectives of the Course	This course helps to understand and evaluate the algebraic aspects related to graphs
Learning Outcome	After going through this course, students will be able to (i) Represent graphs using Matrics (ii) Evaluate and discuss various spectra related to graphs.
Course Outline	 Unit I: Reviews: Marks: 10, L: 7, T: 3 Basics of Graph theory and Linear Algebra, Matrix Representations of a graph: Adjacency matrix and Incidence matrix. Unit II: Spectrum of a graph: Marks: 20, L: 16, T: 4 Eigenvalues and Walks, Eigenvalues and Labeling of graphs, Lower and Upper Bounds for the Eigenvalues, Regular and Line graphs. Unit III: Laplacian Spectrum: Marks: 20, L: 16, T: 4 Laplacian of a graph, Laplacian Eigenvalues, Tree number, The Max-Cut Problem. Seidel matrix and Signless Laplacian matrix. Unit IV: Determinant Expansion: Marks: 10, L: 6, T: 4 Determinant of adjacency matrix, coefficients of characteristic polynomial, Vertex partition and spectrum.
Recommended Text	 Biggs, N. (1974). Algebraic Graph Theory. Cambridge University Press. Wilson, R. J., Beineke, I. W. (2004). Topics in Algebraic Graph Theory. Cambridge University Press.
Reference Books	 Knauer, U. (2011). Algebraic Graph Theory. Hubert & Co., Germany. Godsil, C., Royle, G. (2001). Algebraic Graph Theory. Springer Verlag Newyork.
Website and E-learning Source	http://www.graphtheory.com/

Title of the Course : Computational Fluid Dynamics Paper Number : 4D2 Category : DSE Year 2 Credits 4 Course Code: MTHD13 Semester IV Instructional Hours (Per week)

Objectives of the Course	Introduction of various numerical techniques and
	tools to solve fluid flow problems and some
	practicals on it
Learner Outcome	After going through this course students will be
	able to (i) Describe various numerical methods
	used in CFD (ii) Solve fluid flow problems using CFD
	techniques and tools
Course Outline	Section A: Unit I: Basics of CFD and Discretization:
	Marks:15, L: 10, T: 4
	CFD, governing equations of fluid dynamics, finite
	control volume, infinitesimal fluid element,
	substantial derivative, governing equations of fluid
	dynamics, boundary conditions, forms suitable for
	CFD, classifications of PDE, Discretization
	techniques, explicit and implicit approaches, errors
	and stability, general transformation equations,
	stretched grid, boundary fitted co-ordinate
	systems.
	Unit II: CFD Techniques: Marks:15, L: 10, T: 3
	Lax-Wen and MacCormack's technique, Relaxation
	technique, ADI Technique, pressure correction
	technique.
	Unit III: Solutions using Numerical techniques:
	Marks:15, L: 10, T: 3
	Numerical solution of Quasi-One Dimensional
	Nozzle Flows, Incompressible Couette flow:
	Numerical Solutions using Implicit Crank-Nicholson
	technique, Numerical Solution by solving
	Complete-Navier-Stokes equation.
	Section B: Practical: Marks: 15, L: 15,
	P:10Development of code and execution in
	FORTRAN/C/C++ for various flow problems using
	Crank-Nicholson technique.
Recommended Text	1. Anderson. J. D. (1995). Computational Fluid
	Dynamics the Basics with Applications. Mc-Graw
	Hill.
	2. Chung, T. J. (2010). Computational fluid
	dynamics. Cambridge university press.
Reference Books.	1. Sengupta, T. K. (2004). Fundamentals of
	computational fluid dynamics. Hyderabad (India):
	University Press
Website and E learning Source	http://web.engr.uky.edu/~acfd/me691-lctr-nts.p

Title of the Course : Game Theory Paper Number : 4D3 Category : DSE Year 2 Credits 4 Course Code: MTHD14 Semester IV Instructional Hours (Per week)

Objectives of the Course	To build up a strong analytical foundation of Game
	Theory
Learning Outcome	After going through this course the students will
	be able to
	(i) Model the rational behavior of agents
	engaged in conflicts.
	(ii) Distinguish between the cooperative
	and non-cooperative approaches of
	Games.
	(iii) Apply the models of Game Theory in
	socio-economic problems.
Course Outline	Unit I: Game Theory Fundamentals: Marks: 12, L:
	9, T:3
	Historical background; Zero sum games; non-zero
	sum games; extensive form games;Cooperative
	games; Bargaining games; Cooperative versus non-
	cooperative games;
	Unit II: Two-person Zero-sum Games: Marks: 12,
	L: 9, T:3
	Saddle point; Minimax and maximin strategies;
	Solving 2xn and mx2 games; Dominance; Mixed
	strategy; Linear Programing Methods to solve a
	two person zero sum game.
	Unit III: Two-person Non-Zero-sum Games:
	Marks: 12, L: 9, T:3
	Basic Definitions; Nash equilibrium; Pure and mixed
	strategies in Nash equilibrium.
	Unit IV: Extensive Form Games: Marks: 12, L: 9,
	Т:3
	The Extensive Form; The Strategic Form;
	Backward induction and subgame
	perfection;Perfect Bayesian equilibrium.
	Unit V: Cooperative Game Theory: Marks: 12, L: 9,
	T:3
	Cooperative Games with Transferable Utility; The
	Core; The Shapley value;
Recommended Text	1. Narahari, Y. (2014). Game Theory and

	Mechanism Design. World Scientific. 2. Chakravarty, S.R., Mitra, M., Sarkar, P. (2015). A Course on Cooperative GameTheory. Cambrige
	University Press.
Reference Books	1. Peter, H. (2008). Game Theory A Multi-leveled
	Approach. Springer.
Website and E-learning Source	http:/www.mathforum.org, http:/opensource.org

Department of Mathematics : Debraj Roy College Title of the Course : Topology Paper Number : 4D4 Category : DSE Year 2 Credits 4 Course Code: MTHD15 Semester IV Instructional Hours (Per week)

Lecture: 3 Tutorial : 1 Lab Practical : 0 Total : 4	
Objectives of the Course	To introduce the most general mathematical structure for discussing notions of analysis like convergence, continuity, compactness and connectedness. Notions like separation axioms, nets and filters will be introduced to emphasize that topological structures are more general than metric structures.
Learning Outcome	 After going through this course, students will be able to (i) Prove results of classical analysis in a more general setting (ii) Obtain relationship of continuity with connectedness, compactness and separation axioms
Course Outline	Unit I: Basics Topology: Marks: 20, L :15, T: 5 Open Sets, Closed Sets, Neighbourhood, Limit Point, Interior, Closure, Basis, Sub-basis, finer and coarser topology, Subspace. Continuous Functions, Open Functions, Closed Functions, Homoemorphism, Composition of Continuous Functions, Pasting Lemma, Product Topology, Quotient Topology. Unit II: Compactness and Connectedness: Marks: 20, L :15, T: 5 Compact Space, Countable Compact Spaces, Linderloff Space, Local Compactness, Idea of Comapacttification, One point compactification,

	Stone Cash compactification Connected acce Dath
	Stone Cech compactification, Connectedness, Path
	Connectedness, Local Connectedness.
	Unit III: Countability, Separation Axioms,
	Metrisation: Marks: 20, L :15 , T: 5
	The countability axioms, the separation axioms,
	Normal spaces, The Urysohn Lemma, The Tietze
	Extension theorem. Uniformities and basic
	definitions, Metrisation, Urysohn Metrization
	Theorem
Recommended Texts	1. Munkres, J. (2015). Topology, Pearson.
	2. Joshi, K. D. (1983). Introduction to general
	topology. New Age International.
	3. Simmons, G. F., Hammitt, J. K. (2017).
	Introduction to topology and modern analysis.
	New York: McGraw-Hill.
	4. Murdeshwar, M.G. (1990). General topology.
	New Age.
Reference Books	1. Lipschutz, S. Schuam's outlines. New York:
	McGraw-Hill.
	2. Kelley, J. L. (1975). General Topology. Springer.
Website and E-learning Source	http://mathforum.org,
	http://ocw.mit.edu/ocwweb/Mathematics,
	httip://www.opensource.org

Title of the Course : Wavelet Analysis Mathematical Biology Paper Number : 4D5 Category : DSE Year 2 Credits 4 Course Code: MTHD16 Semester IV Instructional Hours (Per week) Lecture: 3 Tutorial : 1 Lab Practical : 0 Total : 4

Objectives of the Course	The objective of this course is to introduce (i)
	Advanced Fourier Analysis (ii) The Time-Frequency
	Analysis (iii) The Wavelet Transform (iv)
	Multiresolution Analysis.
Learning Outcomes	After going through this course, students will be
	able to (i) Describe Audio Noising, (ii) Analyse
	Single Compression (iii) Develop models for Image
	Enhancement.
Course Outline	Unit I: Advanced Fourier Analysis: Marks: 15, L:
	12, T: 4
	Introduction, The Fourier Transform in L^1 (R),
	Examples, Basic Properties of Fourier Transform,

	Convolution Theorem, The Fourier Transform in
	$L^{2}(R)$, Examples, Parseval's identity, Inversion
	formula, Plancheral's Theorem, The uncertaintity
	Principle, Heisenberg's Inequality
	Unit II: The Time-Frequency Analysis: Marks: 15,
	L: 11, T: 4
	Introduction, The Time-Frequency Localization,
	The Continuous Gabor Transforms, Examples,
	Properties of Gabor transformation, Parseval's
	Formula, Inversion formula, Conservation of
	energy, Frames, Discrete Gabor Transform.
	Unit III: The Wavelet Transform: Marks: 15, L: 11,
	T: 3
	Introduction, The continuous Wavelet Transform
	and examples, Basic properties, Perserval's
	Formula, Inversion Formula, The Discrete Wavelet
	Transform, Conservation of Energy, Frames,
	Orthogonal Wavelets
	Unit IV: Multiresolution Analysis: Marks: 15, L:
	11, T: 4
	Introduction, Definition and its Consequences,
	Examples, Construction of Mother Wavelets with
	Examples, Basic Properties of Scaling Functions
	and Orthonormal Wavelet Bases, The Haar
	Multiresolution Analysis.
Recommended Text Books	1. Debnath, L., Shah, F. A. (2015). Wavelet
	Transforms and their Applications, Birkhauser,
	Boston.
	2. Chui, C. K. (1992). An Introduction to Wavelets.
	Academic Press, New York.
Reference Books	1. Mallat, S. (1999). A wavelet tour of signal
	processing. Elsevier.
Website and Elearning Source	https://cseweb.ucsd.edu/-
	badeu/Doc/wavelets/polikar_wavelets.pdf

Title of the Course : Foundation in Mathematics Paper Number : 2G1 Category :GE Year 1 Credits 4 Course Code: MTHG1 Semester II Instructional Hours (Per week) Lecture: 3 Tutorial : 1 Lab Practical : 0 Total : 4

Objectives of the Course	To build up a strong foundation of the basic
	Mathematical tools

Learning Objectives	After going through this course the students will
	be able to
	(i) Identify the Mathematical objects to
	describe social and physical systems.
	(ii) (ii) Use the Mathematical tools to
	address context based problems
Course Outline	Unit I: Sets and Logic: Marks 15 L: 12, T: 3
	Statements, Statements with quantifiers,
	compound statements, implications; Sets, Power
	sets, Cartesian product, countability of sets,
	functions and relations, graphs of functions.
	Unit II: Counting Principles: Marks 15 L: 11, T: 4
	Sum and Product rule of counting, permutation
	and combination, multinomial theorem, Pigeon
	hole principle, inclusion-exclusion principle, set
	partitions, Catalan numbers.
	Unit III: Linear Algebra: Marks 15 L: 11, T: 4
	Systems of Linear equations, Vector space, Linear
	Transformations, matrix and determinants.
	Unit IV: Finite Differences and Interpolation:
	Marks 15 L: 11, T: 4
	Introduction, Forward difference operator,
	· · · · ·
	Operators E and D, Backward differences, central
	differences, Newton forward and backward
	interpolation formulae, Lagrange's interpolation formula.
Decomposed of Tout	
Recommended Text	1. Kumar, A., Kumaresan, S., Sarma, B.K. (2018). A
	Foundation Course in Mathematics, Narosa.
	2. Kumaresan, S. (2006). Linear Algebra- A
	Geometric Approach, Prentice Hall India.
	3. Rao, G. S. (2003). Numerical Analysis. New Age
	International Publishers.
	4. Berge, C. (1971). Principles of combinatorics.
	New York, 176.
Reference Books	1. Stewart, I., Tall, D. (2015). The Foundations of
	Mathematics. Oxford University Press.
	2. Shastry, S. S. (2012). Introductory Methods of
	Numerical Analysis, Prentice Hall India Learning
	Private Limited.
Website and Elearning Source	http:/www.mathforum.org, http:/opensource.org

Title of the Course : Mathematical Modelling Paper Number : 3G1 Category :GE Year 2 Credits 4

Prerequisites for the Course	Basic knowledge of calculus and set theory.
Objectives of the Course	The objectives of the course are to introduce the
	reader to solve ordinary differential equations of
	first and second order, also to introduce the
	preliminary of graph theory. To introduce the
	readers with some Mathematical modeling
	problems using differential equations and Graphs.
Learning outcome	After going through this course reader will be able
	to model physical problems using differential
	equations and graphs. After going through this
	course the students will be able to
	(i) Solve first and second order Differential
	equations.
	(ii) Build and solve Mathematical models
	using Differential Equations
	(iii) Build and solve Mathematical models
	using Graph Theory
Course outline	Unit I: First and Second Order Differential
	Equations Marks 15 L: 12, T: 3
	General and particular solutions, separation of
	variables, Homogeneous equations, Linear
	Differential Equations of first order, General and
	particular solutions of homogeneous and
	nonhomogeneous linear differential equations of
	second order with constant coefficients, First
	order systems, solution of two-dimensional
	systems (Simple cases)
	Unit II: Mathematical Modelling Through
	Differential Equations Marks 15 L: 11, T: 4
	Techniques of mathematical modeling, Mathematical modeling through first and second
	order ordinary differential equations: Linear
	growth and Decay models, non-linear growth and
	decay models, Compartment models,
	mathematical modeling in dynamics, Rectilinear
	motion, Miscellaneous models
	Unit III: Graph Theory Marks 15 L: 11, T: 4
	Introduction, Graphs and their representations,
	Graph terminology, Types of graphs, Fundamental
	and some additional theorems of graph theory,
	Operation on graphs, Matrix representation of a
	graph, Adjacency and incidence matrices.
	Unit IV: Mathematical Modelling Through Graphs
	enter in athematical modeling in ough ordpits

	Marks 15 L: 11, T: 4
	Situations that can be modeled through graphs,
	Mathematical modeling in terms of directed
	graphs, Signed graphs, Weighted diagraphs, Non-
	oriented graphs.
Recommended Text	1. Edwards H. C., Penny D. E. (1995). Differential
	Equations and Boundary Value Problems:
	Computing and Modeling. Prentice Hall.
	2. Kapur, J. N. (1988) Mathematical Modelling,
	New Age International Publishers.
	3. Deo, N. (2017). Graph theory with applications
	to engineering and computer science. Courier
	Dover Publications.
Reference Books	1. Barnes, B., Fulford, G. R. (2008). Mathematical
	Modelling with Case Studies, CRC Press.
	2. Bender, E. A. (2012). An introduction to
	mathematical modeling. Courier Corporation.
	3. Meerschaert, M. M. (2013). Mathematical
	Modelling, Academic Press.
Website and E-learning Source	http:/www.mathforum.org, http:/opensource.org